Matemática, perguntado por MarcelaOliveira211, 1 ano atrás

o conjunto imagem ,Im da função y=ax²+bx+c a ≠ 0 e o conjunto dos valores que y pode assumir
Im={yeR|y≥yv =-∆/4a}
ou
Im={yeR|y≤yv=-∆/4a}
podemos afirmar que o conjunto imagem Im da função f(x)=4x²+4x+4 e ;
a)Im(f)={yeR|y≤6}.
b)Im(f)={yeR|y≤-6}
c)Im(f)={yeR|y ≥-6}
d)Im(f)={yeR|y ≥ 6}

Soluções para a tarefa

Respondido por fonfondiogo
11
yv=-∆/4a = - (b² - 4ac)/4a = -(4² - 4.4.4)/4.4 = -(16 - 64)/16 = - (- 48)/16
=48/16 = 3

a=4   a>0     concavidade para cima, então 3 será o minimo, menor valor que essa função assume.

Im(f)={yeR|y ≥ 3}
Perguntas interessantes