Matemática, perguntado por lilicaa, 1 ano atrás

Num triângulo retângulo, os catetos medem 7 e 24 cm. Quantos centímetros medem a altura relativa ao maior lado desse triângulo?


rafaelacestito: Se os cateto medem 7 e 24, primeiramente deves calcular a medida da hipotenusa atraves do teorema de pitagoras ou seja: h²=c1²+c2², isso vai ser igual a: 25, agora vc deve aplicar a formula h (hipotenusa) x H (altura relativa ao maior angulo (hipotenusa)) = C1 .C2. ou seja: 25x= 168 logo x= 6,72

Soluções para a tarefa

Respondido por rafaelacestito
7
Se os cateto medem 7 e 24, primeiramente deves calcular a medida da hipotenusa atraves do teorema de pitagoras ou seja: h²=c1²+c2², isso vai ser igual a: 25, agora vc deve aplicar a formula h (hipotenusa) x H (altura relativa ao maior angulo (hipotenusa)) = C1 .C2. ou seja: 25x= 168 logo x= 6,72
Respondido por estudarébom
2
vamos chamar os lados do triângulo de:
a = ? vamos encontrar
b = 7
c = 24

a² = b² + c²
a² = 7² + 24²
a² = 49 + 576
a² = 625
a = √ 625

Relações métricas no triângulo retângulo

h² = m.n
b² = a.n
c² = a.m

b² = a.n
7² = 25.n
49 = 25n
n = 49/25

c² = a.m
24² = 25.m
576 = 25m
m = 576/25

h² = m.n
h² = 576/25 * 49,25
h² = 28224/625
h = √ 28224/625
h = 168/25
h = 6,72 cm

Resposta: 6,72 cm




Perguntas interessantes