Num plano α; temos dois vetores ~a e ~b com origens coincidentes, formando um ^angulo θ = 60o: Se os m´odulos de ~a e ~b s~ao, respectivamente, iguais a 3 u e 4 u; determine o m´odulo do vetor-soma.
Soluções para a tarefa
Respondido por
5
Como os vetores a e b, possuem a mesma origem no plano mas angulos variáveis, podemos determinar o módulo do vetor soma utilizando vários métodos, como a Lei dos Cossenos.
O teorema dos cossenos estabelece que "Em qualquer triângulo, o quadrado de um dos lados corresponde à soma dos quadrados dos outros dois lados, menos o dobro do produto desses dois lados pelo cosseno do ângulo entre eles." . Assim, pela lei dos cossenos temos a seguinte relação:
θ
a) Como o angulo formado pelos vetores é de 0°, isso significa que eles possuem a mesma direção e sentido, logo, para achar o seu vetor soma basta somar os vetores:
s = a + b
s = 6 + 8 = 14
Portanto, a soma dos vetores a e b, com θ = 0° é 14
b) Como o angulo entre os vetores é de 180°, isso indica que eles possuem a mesma direção mas sentidos opostos. Logo, o módulo da sua força será dada por:
| s | = a - b
| s | = 6 - 8
| s | = 2
Portanto, a soma dos vetores a e b, com θ = 180° é 14
c) Como os vetores a e b tem a mesma origem e possuem um angulo θ = 90°, dizemos que eles são ortogonais e podemos calcular o seu vetor soma por Pitágoras:
Portanto, a soma dos vetores a e b, com θ = 90° é 5
d) Nesse caso podemos aplicar a Lei dos Cossenos, conforme observado abaixo:
θ
s = 6
Portanto, a soma dos vetores a e b, com θ = 60° é 6
O teorema dos cossenos estabelece que "Em qualquer triângulo, o quadrado de um dos lados corresponde à soma dos quadrados dos outros dois lados, menos o dobro do produto desses dois lados pelo cosseno do ângulo entre eles." . Assim, pela lei dos cossenos temos a seguinte relação:
θ
a) Como o angulo formado pelos vetores é de 0°, isso significa que eles possuem a mesma direção e sentido, logo, para achar o seu vetor soma basta somar os vetores:
s = a + b
s = 6 + 8 = 14
Portanto, a soma dos vetores a e b, com θ = 0° é 14
b) Como o angulo entre os vetores é de 180°, isso indica que eles possuem a mesma direção mas sentidos opostos. Logo, o módulo da sua força será dada por:
| s | = a - b
| s | = 6 - 8
| s | = 2
Portanto, a soma dos vetores a e b, com θ = 180° é 14
c) Como os vetores a e b tem a mesma origem e possuem um angulo θ = 90°, dizemos que eles são ortogonais e podemos calcular o seu vetor soma por Pitágoras:
Portanto, a soma dos vetores a e b, com θ = 90° é 5
d) Nesse caso podemos aplicar a Lei dos Cossenos, conforme observado abaixo:
θ
s = 6
Portanto, a soma dos vetores a e b, com θ = 60° é 6
Perguntas interessantes
Informática,
7 meses atrás
Português,
7 meses atrás
Química,
8 meses atrás
Biologia,
8 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás