num concurso com 1600 pessoas , 400 gostam de matemática, 600 gostam de raciocínio lógico , e 260 gostam das duas . uma pessoa é escolhida ao acaso , dentre as participantes do certame. Qual a probabilidade dela não gostar nem de matemática e nem de raciocínio lógico ?
Soluções para a tarefa
Total de pessoas: 1600
Gostam de matemática: 400
Gostam de raciocínio lógico: 600
Gostam das duas: 260
Nessas 400 pessoas que gostam de matemática e nas 600 pessoas que gostam de raciocínio lógico, também estão inclusas as que gostam dos dois, então vamos remover essas 260 pessoas que gostam das duas de cada um para saber somente quem gosta de matemática ou raciocínio lógico:
Gostam somente de matemática: 400 - 260 = 140
Gostam somente de raciocínio lógico: 600 -260 = 340
Agora vamos descobrir o número de pessoas que não gostam de nada, e para isso basta subtrair do total o número de pessoas que gostam de algo:
1600 -( 260 +140 +340)
1600 -( 400 +340)
1600 -740
860
Como queremos a probabilidade dela não gostar de nada, então nosso evento será 860 ( pessoas que não gostam de nada) sobre o espaço amostral ( as pessoas do curso).
860 /1600
86/160
43/80
Dúvidas só perguntar XD