no triângulo da figura abaixo, temos DE paralelo de BC. Qual a medida do lado AC desse triângulo?
Anexos:
Soluções para a tarefa
Respondido por
34
Temos que AD é proporcional a AE e que DB é proporcional a EC, assim
x --> 2x
x+5 --> x + 20
Fazendo a regra de três:
x(x+20) = (x+5)2x
x² + 20x = 2x² +10x
x² - 2x² + 20x - 10x = 0
-x² +10x = 0
x(-x + 10) = 0
x = 0 como x não pode ser igual a zero, descartamos essa resposta
-x + 10 = 0
-x = -10
x = 10
Assim x = 10
AC = AE + EC
AC = 2x + x + 20
AC = 2.10 + 10 + 20
AC = 20 + 10 + 20
AC = 50
x --> 2x
x+5 --> x + 20
Fazendo a regra de três:
x(x+20) = (x+5)2x
x² + 20x = 2x² +10x
x² - 2x² + 20x - 10x = 0
-x² +10x = 0
x(-x + 10) = 0
x = 0 como x não pode ser igual a zero, descartamos essa resposta
-x + 10 = 0
-x = -10
x = 10
Assim x = 10
AC = AE + EC
AC = 2x + x + 20
AC = 2.10 + 10 + 20
AC = 20 + 10 + 20
AC = 50
Perguntas interessantes
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás