Matemática, perguntado por juliladeira, 1 ano atrás

Na Grécia Antiga, Pitágoras estudou várias propriedades dos chamados números figurados, como, por exemplo, os números triangulares. Os primeiros cinco números triangulares são indicados na figura.



O número triangular Tn é a soma dos n números naturais de 1 a n. A soma da seqüência dos números inteiros de 1 a n pode ser obtida considerando-se que a soma do primeiro termo com o último é igual à do segundo termo com o penúltimo e assim por diante. Desse modo, o resultado pode ser obtido, somando-se o primeiro termo ao último e multiplicando-se o valor encontrado pela metade do número de termos da seqüência.



O nono número triangular T9 é


A- 66

B- 55

C- 45

D- 36

E- 28

Anexos:

Soluções para a tarefa

Respondido por SocratesA
16

Resposta:

Para calcularmos o número triangular T9 pode-se recorrer à fórmula

Tn = [n (n + 1)] / 2.

Substituindo n por 9 temos:

T9 = [9. (9 + 1)] / 2

T9 = [9,10] / 2

T9 = 90/2

T9 = 45 que corresponde a alternativa "C"

Veja mais em:

https://brainly.com.br/tarefa/25486669

Explicação passo-a-passo:

Anexos:
Perguntas interessantes