Na figura temos que a//b//c. Considerando que AB = 21 cm, AC = 49 cm e DE = 27 cm, qual de DF ?
Soluções para a tarefa
Respondido por
870
Está faltando a figura. A e D estão na reta a? B e E estão na reta b? C e F estão na reta c? Se for assim, segue a solução:
AB / AC = DE / DF
21/49 = 27/x
3/7 = 27/x ⇒ 3x = 27 . 7 ⇒ x = (27 . 7)/3
x = 9 . 7 = 63
Portando, a medida de DF é 63 cm
AB / AC = DE / DF
21/49 = 27/x
3/7 = 27/x ⇒ 3x = 27 . 7 ⇒ x = (27 . 7)/3
x = 9 . 7 = 63
Portando, a medida de DF é 63 cm
Respondido por
186
Considerando a proporcionalidade estabelecida na figura, DF = 63.
Essa é uma tarefa que envolve Teorema de Tales. Este teorema afirma haver uma proporcionalidade entre um feixe de retas paralelas cortadas por retas transversais.
Nas retas do exercício, temos as seguintes medidas: AB = 21 cm, AC = 49 cm e DE = 27 cm.
Nesse sentido, vamos estabelecer as relações de proporcionalidade para encontrarmos o valor desconhecido de DF:
Sendo assim, conclui-se que DF = 63 cm.
Além disso, caso você queira encontrar o valor das medidas de BC e de EF, basta realizar uma subtração:
BC = AC - AB
BC = 49 - 21
BC = 28
EF = DF - DE
EF = 63 - 27
EF = 36
Aprenda mais:
https://brainly.com.br/tarefa/44553645
Anexos:
Perguntas interessantes