Multiplicação de monômio por polinômios. ( Monômios um único termo, polinômio dois ou mais termos). Para resolver multiplicamos cada termo do polinômio pelo monômio. Na página 56, prestar atenção nos exemplo e resolver as atividades números 1 e 2. Calcule os produtos.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
Comutativa: A ordem do polinômio não altera o produto.
P(x) . Q(x) = P(x) . Q(x)
Elemento neutro: O elemento neutro na multiplicação de polinômio é representado por I(x), sendo I(x) = 1.
P(x) . I(x) = I(x) . P(x) = 1 . P(x) = P(x)
Distributiva: O produto de dois polinômios (P e Q) é definido como sendo a soma dos produtos de cada monômio de P por todos os monômios de Q.
[P(x) + B(x)] . [Q(x) + T(x)] = P(x) . Q(x) + P(x) . T(x) + B(x) . Q(x) + B(x) . T(x)
Produto de monômio
Ao realizamos um produto de monômios, multiplicamos coeficiente com coeficiente e parte literal com parte literal. Veja
3x2 . 4x = 3 . 4 . x2 + 1 = 12 . x3 = 12x3 → Multiplicamos o coeficiente 3 com 4 e a parte literal x2 e x, conservamos a base e somamos os expoentes.
5y . 2y3 = 5 . 2 . y1 + 3 = 10y4 → Multiplicamos o coeficiente 5 com 2 e a parte literal y e y3, conservamos a base e somamos os expoentes
Produto de monômios com polinômio
Para multiplicarmos um monômio por cada termo de um polinômio, utilizamos a propriedade distributiva. Observe o exemplo:
z . (3z + 2y)
= z . 3z + z . 2y =
= 3z2 + 2zy
Multiplicamos z por 3z e obtivemos 3z2
Multiplicamos z por 2y e obtivemos 2zy
Produto de polinômio com polinômio
Para realizarmos a multiplicação de polinômio com polinômio, utilizamos a propriedade distributiva, com isso multiplicamos cada termo (monômio) de um dos polinômios pelo outro termo (monômio) do outro polinômio. Caso haja termos semelhantes, ou seja, com mesma parte literal devemos reduzi-los. Acompanhe o exemplo a seguir:
(3x + 2y) . (2x - 5y) =
= 3x . 2x + 3x . -5y + 2y . 2x + 2y . -5y =
= 6x2 - 15xy + 4xy - 10y2 =
Reduza os termos semelhantes: – 15xy + 4xy
= 6x2 - 11xy - 10y2
Multiplicamos 2x por 3x, o que resultou 6x2
Multiplicamos 2x por 2y o que resultou 4xy.
Multiplicamos – 5y por 3x o que resultou – 15 xy.
Multiplicamos – 5y por + 2y o que resultou – 10y2.