Matemática, perguntado por Usuário anônimo, 1 ano atrás

Mostre que:

\boxed{\boxed{ \frac{1-2cos^{2}x+cos^{4}x}{1-2sen^{2}x+sen^{4}x} =tg^{4}x}}

Soluções para a tarefa

Respondido por DanJR
2
Olá!

\mathsf{\dfrac{1 - 2 \cdot \cos^2 x + \cos^4 x}{1 - 2 \cdot \sin^2 x + \sin^4 x} =}

Fatorando,

\mathsf{\dfrac{(1 - \cos^2 x)^2}{(1 - \sin^2 x)^2} =}


 Ademais, sabemos que: \mathbf{\sin^2 x + \cos^2 x = 1}. Com efeito,

\mathbf{\sin^2 x = 1 - \cos^2 x}

Ou,

\mathbf{\cos^2 x = 1 - \sin^2 x}


 Substituindo,

\\ \mathsf{\dfrac{(1 - \cos^2 x)^2}{(1 - \sin^2 x)^2} =} \\\\\\ \mathsf{\dfrac{(\sin^2 x)^2}{(\cos^2 x)^2} =} \\\\\\ \mathsf{\dfrac{\sin^4 x}{\cos^4 x} =} \\\\\\ \mathsf{\left(\dfrac{\sin x}{\cos x}\right)^4=} \\\\\\ \boxed{\mathsf{\tan^4 x}}

Usuário anônimo: Excelente resposta fera !!! Muito obrigado ! :D :D
DanJR: Obrigado! Não há de quê!! Rs
Respondido por CyberKirito
1

\mathsf{\dfrac{1 - 2.\cos^2 x + \cos^4 x}{1 - 2.\sin^2 x + \sin^4 x} =}

\mathsf{\dfrac{(1 - \cos^2 x)^2}{(1 - \sin^2 x)^2} =}

\\ \mathsf{\dfrac{(1 - \cos^2 x)^2}{(1 - \sin^2 x)^2} =} \\\mathsf{\dfrac{(\sin^2 x)^2}{(\cos^2 x)^2} =} \\\mathsf{\dfrac{\sin^4 x}{\cos^4 x} =} \\\mathsf{\left(\dfrac{\sin x}{\cos x}\right)^4=} \\\huge\boxed{\boxed{\boxed{\mathsf{\tan^4 x}}}}}

Perguntas interessantes