Montar 2 matrizes 3x3, sendo os elementos da 1a em PA de razão 1/2 e da 2a em PG de razão 3 e multipilca-las
Soluções para a tarefa
Respondido por
1
Olá.
Cada matriz 3 por 3 terá 9 elementos.
Um exemplo de PA de razão 1/2 (ou 0.5), com o primeiro termo sendo 1:
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
Um exemplo de PG de razão 3, com o primeiro termo sendo 2:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122}
Agora é só colocar os elementos nas matrizes e multiplicá-las.
Vamos lá:
Como as multiplicações são de números grandes, vamos fazer cada elemento da matriz produto separadamente:
a1 = 1*2 + 1.5*54 + 2*1458 = 2999
a2 = 1*6 + 1.5*162 + 2*4374 = 8997
a3 = 1*18 + 1.5*486 + 2*13122 = 26991
a4 = 2.5*2 + 3*54 + 3.5*1458 = 5270
a5 = 2.5*6 + 3*162 + 3.5*4374 = 15810
a6 = 2.5*18+ 3*486 + 3.5*13122 = 47430
a7 = 4*2 + 4.5*54 + 5*1458 = 7541
a8 = 4*6 + 4.5*162 + 5*4374 = 22623
a9 = 4*18 + 4.5*486 + 5*13122 = 67869
Matriz produto:
É isso.
Bons estudo. :)
Cada matriz 3 por 3 terá 9 elementos.
Um exemplo de PA de razão 1/2 (ou 0.5), com o primeiro termo sendo 1:
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
Um exemplo de PG de razão 3, com o primeiro termo sendo 2:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122}
Agora é só colocar os elementos nas matrizes e multiplicá-las.
Vamos lá:
Como as multiplicações são de números grandes, vamos fazer cada elemento da matriz produto separadamente:
a1 = 1*2 + 1.5*54 + 2*1458 = 2999
a2 = 1*6 + 1.5*162 + 2*4374 = 8997
a3 = 1*18 + 1.5*486 + 2*13122 = 26991
a4 = 2.5*2 + 3*54 + 3.5*1458 = 5270
a5 = 2.5*6 + 3*162 + 3.5*4374 = 15810
a6 = 2.5*18+ 3*486 + 3.5*13122 = 47430
a7 = 4*2 + 4.5*54 + 5*1458 = 7541
a8 = 4*6 + 4.5*162 + 5*4374 = 22623
a9 = 4*18 + 4.5*486 + 5*13122 = 67869
Matriz produto:
É isso.
Bons estudo. :)
Perguntas interessantes