Matemática, perguntado por coutinhoe043, 6 meses atrás

moço inteligente me ajuda ​

Anexos:

EinsteindoYahoo: 01.

log[1/2] (1/32)=x
2^(-5) =2^(-x)
x=5

log[y] 81 =4
3^4 = y^4
y=3
log (xy/45) / log 3
[log x + log y -log 45]/ log 3
[log x + log y -log (3²*5)]/ log 3
[log x + log y -log 3² - log 5]/ log 3
[log 5 + log 3 -2*log 3 - log 5]/ log 3
[ -*log 3]/ log 3
=-1
EinsteindoYahoo: 02.
a*b*c=1
log[b] c * log[c] a * log[a] b =1
logc/log b * loga /log c * log b /log a =1

=log a * log b * log c /(log a * log b * log c )

= log b * log c /( log b * log c )
= log c /( log c )
= 1 ==> CQP

# cqc ==>como queríamos provar
EinsteindoYahoo: 03.
log[x] a =6 ==> log a=6 * log x
log[x] b=4 ==> log b= 4 * log x
log[x] c =2 ==> log c = 2 * log x

log[c] (abc)^(1/2)

=(1/2) * [log a +log b+log c]

=(1/2) * [6 * log x +4 * log x+2 * log x]
=(1/2) * [12 * log x]

= 6 * log x
EinsteindoYahoo: 04.

log[a] a³* b²=m
log a³* b² / log a =m
(log a³ + log b²)=m * log a
(3*log a + log b²)=m * log a

log a *(m-3) =2* log b
log a/log b = 2/(m-3)
log[b] = 2/(m-3) é a resposta
EinsteindoYahoo: 05.

log (a^(-1))^(1/2) - log b²

log a^(-1/2) - 2 log b

(1/2)* log a - 2*log b

=(1/2) * 2 -2 * 3
=1 -6

= -5

Soluções para a tarefa

Respondido por EinsteindoYahoo
0

01.

log[1/2] (1/32)=x

2^(-5) =2^(-x)

x=5

log[y] 81 =4

3^4 = y^4

y=3

log (xy/45) / log 3

[log x + log y -log 45]/ log 3

[log x + log y -log (3²*5)]/ log 3

[log x + log y -log 3² - log 5]/ log 3

[log 5 + log 3 -2*log 3 - log 5]/ log 3

[ -*log 3]/ log 3

=-1

___________________________________

02.

a*b*c=1

log[b] c * log[c] a * log[a] b =1

logc/log b * loga /log c * log b /log a =1

=log a * log b * log c /(log a * log b * log c )

= log b * log c /( log b * log c )

= log c /( log c )

= 1 ==> CQP

# cqc ==>como queríamos provar

___________________________________

03.

log[x] a =6 ==> log a=6 * log x

log[x] b=4 ==> log b= 4 * log x

log[x] c =2 ==> log c = 2 * log x

log[c] (abc)^(1/2)

=(1/2) * [log a +log b+log c]

=(1/2) * [6 * log x +4 * log x+2 * log x]

=(1/2) * [12 * log x]

= 6 * log x

_____________________________________

04.

log[a] a³* b²=m

log a³* b² / log a =m

(log a³ + log b²)=m * log a

(3*log a + log b²)=m * log a

log a *(m-3) =2* log b

log a/log b = 2/(m-3)

log[b] = 2/(m-3) é a resposta

_____________________________________

05.

log (a^(-1))^(1/2) - log b²

log a^(-1/2) - 2 log b

(1/2)* log a - 2*log b

=(1/2) * 2 -2 * 3

=1 -6

= -5

Respondido por jean318
1

Resposta:

Explicação passo a passo:

Quest\tilde{a}	o\:1)

log_{\:y} \:81=4

 y^{4}=81

 y=\sqrt[4]{81}

 y=\sqrt[4]{3^{4} }

 y=3      

log_{\:\frac{1}{2} } \:(\frac{1}{32}) =x

 (\frac{1}{2}) ^{x} =\frac{1}{32}

 (\frac{1}{2}) ^{x} =\frac{1}{2^{5} }

 (\frac{1}{2}) ^{x} =(\frac{1}{2}) ^{5}

     x=5

\frac{x\:.\:y}{45}=\frac{5\:.\:3}{45} =\frac{15}{45} =\frac{1}{3}

    Portanto...

 log_{\:3} \:(\frac{x\:.\:y}{45})=log_{\:3} \:(\frac{1}{3})=log_{\:3} \:(3^{-1}) =(-1)\:.\:log_{\:3} \:3=(-1)\:.\:1=-1

Quest\tilde{a}	o\:2)

a\times\:b\times\:c=\:?

Vamos\:passar\:todos\:para\:a\:base\;10\:=>(base\;invisivel)

\frac{log\:c}{log\:b} \times\frac{log\:a}{log\:c}\times\:\frac{log\:b}{log\:a}=1

Por\:que\:deu\:1?

Resposta:\;Cancelando\:os\:termos\;iguais\:em\;cima\:e\:embaixo\:ok!

Quest\tilde{a}	o\:3)

log_{\:x} \:a=6=>a=x^{6}

log_{\:x} \:b=4=>b=x^{4}

log_{\:x} \:c=2=>c=x^{2}

a.b.c=x^{6}.x^{4}.x^{2}  =x^{12}

\sqrt{abc}=(abc)^{\frac{1}{2} }

log_{\:c} \:\sqrt{abc} =log_{\:c} \:(abc)^{\frac{1}{2} } =\frac{1}{2}\:.\:log_{\:c} \:(abc) =\frac{1}{2}\:.\:log_{\:c} \:(x^{12}) =\frac{1}{2}\:.\:12\:.\:log_{\:c}\:x=\\\\6\:.\:\frac{1}{log_{\:x}\:c } =6\:.\:\frac{1}{2}=3

Quest\tilde{a}	o\:4)

log_{\:b}\:a=?

log_{\:a} \:(a^{3}\:.\:b^{2} )=m

log_{\:a} \:(a^{3}\:.\:b^{2} )=log_{\:a} \:a^{3} +log_{\:a}\:b^{2} =3\:.\:log_{\:a}\:a+2\:.\:log_{\:a}\:b=3\:.\:1+2\:.\:log_{\:a}\:b

Portanto...

3\:.\:1+2\:.\:log_{\:a}\:b=m

3+2\:.\:log_{\:a}\:b=m

2\:.\:log_{\:a}\:b=m-3

Observacao...

log_{\:a}\:b =\frac{1}{log_{\:b}\:a }

2\:.\:\frac{1}{log_{\:b}\:a }=m-3

\frac{2}{log_{\:b}\:a }=m-3

log_{\:b}\:a\: \;.\:(m-3)=2

log_{\:b}\:a=\frac{2}{(m-3)}

Quest\tilde{a}	o\:5)

log\:a=2

log\:b=3

log(\:\frac{\sqrt{\frac{1}{a} } }{b^{2} }) =

log\:\sqrt{\frac{1}{a} } \:\:-\:\:log\:b^{2} =

log\:(\frac{1}{a}) ^{\frac{1}{2} } \:-\:2\:.\:log\:b=

Observacao:

\frac{1}{a} =a^{-1}

\frac{1}{2}\:.\: log\:(a^{-1}) -2\:.\:log\:b=

\frac{1}{2}\:.\:(-1)\:.\:log\:a-2\:.\:log\:b=

-\frac{1}{2}\:.\:log\:a\:-\:2\:.\:log\:b=

-\frac{1}{2}\:.\:(2)\:-\:2\:.\:(3)=

    -\frac{2}{2}\:-\:6=

     -1-6=

         -7

          Ufa!

          Bye!

         Jean318

 

 

 

 


coutinhoe043: moço você é incrível, muito obrigadaaa. Não te achei no Facebook, mas esse aí é meu whats 41995104181 Duda
coutinhoe043: tem que ter muito amor a matéria mesmo, me esforço e entendo só na teoria, na hora dos exercícios da tudo errado. Parabéns, e muito obrigada novamente.
Perguntas interessantes