Matemática, perguntado por pedrojenrique9, 10 meses atrás

MEEEE AJUDEEEM

Log de 0,4² na base 5/2

Log de 125 na base √x= -6

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

\sf log_\frac{5}{2}\:{0,4^2}

\sf log_\frac{5}{2}\:{\left(\dfrac{4}{10}\right)^2}

\sf log_\frac{5}{2}\:{\left(\dfrac{2}{5}\right)^2}

\sf \left(\dfrac{5}{2}\right)^x = \left(\dfrac{2}{5}\right)^2

\sf \left(\dfrac{2}{5}\right)^{-x} = \left(\dfrac{2}{5}\right)^2

\sf  -x = 2

\boxed{\boxed{\sf x = -2}}

\sf log_{\sqrt{x}}\:125 = -6

\sf log_{x^{\frac{1}{2}}}\:5^3 = -6

\sf x^{\frac{-6}{2}} = 5^3

\sf  x^{-3} = 5^3

\sf  x^{-3} = \left(\dfrac{1}{5}\right)^{-3}

\boxed{\boxed{\sf x = \dfrac{1}{5}}}

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

a)

\sf log_{\frac{5}{2}}~0,4=x

\sf \Big(\dfrac{5}{2}\Big)^x=0,4^2

\sf \Big(\dfrac{5}{2}\Big)^x=\Big(\dfrac{4}{10}\Big)^2

\sf \Big(\dfrac{5}{2}\Big)^x=\Big(\dfrac{2}{5}\Big)^2

\sf \Big(\dfrac{5}{2}\Big)^x=\Big[\Big(\dfrac{5}{2}\Big)^{-1}\Big]^2

\sf \Big(\dfrac{5}{2}\Big)^x=\Big(\dfrac{5}{2}\Big)^{-2}

Igualando os expoentes:

\sf \red{x=-2}

b)

\sf log_{\sqrt{x}}~125=-6

\sf (\sqrt{x})^{-6}=125

\sf (x^{\frac{1}{2}})^{-6}=125

\sf x^{\frac{-6}{2}}=125

\sf x^{-3}=125

\sf \dfrac{1}{x^3}=125

\sf 125x^3=1

\sf x^3=\dfrac{1}{125}

\sf x=\sqrt[3]{\dfrac{1}{125}}

\sf \red{x=\dfrac{1}{5}}

Perguntas interessantes