Me de exemplos de retas paralelas?
Soluções para a tarefa
Respondido por
3
As retas r e s são paralelas se, e somente se, possuírem a mesma inclinação ou seus coeficientes angulares forem iguais.
Utilizando a linguagem matemática:

Uma maneira mais simples de verificar se duas retas são paralelas é comparar seus coeficientes angulares: se forem iguais as retas são paralelas.
Exemplo 1. Verifique se as retas r: 2x + 3y – 7 = 0 e s: – 10x – 15y + 45 = 0 são paralelas.
Solução: Vamos determinar o coeficiente angular de cada uma das retas.
Reta r: 2x + 3y – 7 = 0
Para encontrar o coeficiente angular precisamos isolar y na equação geral da reta.

Faremos o mesmo processo para a reta s.
Reta s: – 10x – 15y + 45 = 0

Exemplo 2. Determine a equação geral da reta t que passa pelo ponto P(1, 2) e é paralela à reta r de equação 8x – 2y + 9 = 0.
Solução: para determinar a equação de uma reta basta conhecermos um ponto dessa reta e seu coeficiente angular. Já conhecemos o ponto P(1, 2) da reta procurada, agora resta encontrar o seu coeficiente angular. Como a reta t é paralela à reta s, elas possuem o mesmo coeficiente angular. Assim, utilizando a equação da reta r iremos determinar o coeficiente angular. Segue que:

Podemos afirmar que mt=4. Conhecendo um ponto da reta e seu coeficiente angular, utilizamos a fórmula abaixo para determinar sua equação.

Utilizando a linguagem matemática:

Uma maneira mais simples de verificar se duas retas são paralelas é comparar seus coeficientes angulares: se forem iguais as retas são paralelas.
Exemplo 1. Verifique se as retas r: 2x + 3y – 7 = 0 e s: – 10x – 15y + 45 = 0 são paralelas.
Solução: Vamos determinar o coeficiente angular de cada uma das retas.
Reta r: 2x + 3y – 7 = 0
Para encontrar o coeficiente angular precisamos isolar y na equação geral da reta.

Faremos o mesmo processo para a reta s.
Reta s: – 10x – 15y + 45 = 0

Exemplo 2. Determine a equação geral da reta t que passa pelo ponto P(1, 2) e é paralela à reta r de equação 8x – 2y + 9 = 0.
Solução: para determinar a equação de uma reta basta conhecermos um ponto dessa reta e seu coeficiente angular. Já conhecemos o ponto P(1, 2) da reta procurada, agora resta encontrar o seu coeficiente angular. Como a reta t é paralela à reta s, elas possuem o mesmo coeficiente angular. Assim, utilizando a equação da reta r iremos determinar o coeficiente angular. Segue que:

Podemos afirmar que mt=4. Conhecendo um ponto da reta e seu coeficiente angular, utilizamos a fórmula abaixo para determinar sua equação.

Anexos:
Perguntas interessantes