Matemática, perguntado por maleaas, 1 ano atrás

Me ajudem urgentemente pfv. Dentre as frações \frac{1}{9}, \frac{2}{3}, \frac{4}{5} e \frac{6}{15}, a quantidade de geratrizes de dízimas periódicas é

1.

2.

3.

4.

Soluções para a tarefa

Respondido por colossoblack
4

Dividimos, se a resposta não for um inteiro ou decimal finito, é dizima.

1/9 = 0,111... ( É dizima)

2/3 = 0,666... ( É dizima)

4/5 = 0,8 não é dizima

6/15 = 0,4 não é dizima

Respondido por EinsteindoYahoo
4

Resposta:

Dízimas são números decimais. As dízimas podem ser classificadas em:

Finitas==> que tem fim ...ex: 1,45

e

Infinitas ==> e aquelas que não tem fim, podendo ser números racionais e irracionais:

ex:

racionais 0,3333333....=1/3

irracionais √2=1,41421356237309....

Temos as dízimas infinitas periódicas e as não periódicas

* Dizimas periódicas: são números decimais que pertencem ao conjunto dos números racionais.

*  Dízimas não periódicas pertencem ao conjunto dos números irracionais.

1/9=0,11111 ...  é um dízima infinita periódica

2/3=0,6666... é um dízima infinita periódica

4/5=0,8 é uma dízima finita, portanto , não periódica

6/15=0,4 é uma dízima finita, portanto , não periódica

Resposta: 2 dízimas periódicas

Perguntas interessantes