Física, perguntado por julianembaierle, 7 meses atrás

ME AJUDEM POR FAVOR TEM QUE TER CALCULO
6 - (Modificada) Um objeto de massa 5 kg é levado, em uma nave, da Terra para a Lua. Um disparador consegue, tanto na Terra quanto na Lua, jogar o objeto verticalmente para cima com velocidade de 8 m/s. A aceleração da gravidade na Lua vale 1/6 da aceleração da gravidade na Terra, e a resistência do ar pode ser desprezada tanto na Terra quanto na Lua. Se na Terra a altura atingida pelo objeto ao ser disparado vale 3,2 m, na Lua o objeto atingirá
a altura, em metros, de:
a) 0,53
b) 0,60
c) 1,80
d) 10,80
e) 19,20

7 - Um objeto desliza sobre uma mesa e atingirá o chão após ultrapassar a borda dessa mesa, descrevendo um movimento parabólico com relação aos eixos horizontal e vertical arbitrados por um observador parado. Com relação a esse observador, é correto afirmar sobre o objeto que sua(s):
a) velocidade horizontal e sua aceleração vertical são constantes.
b) velocidade horizontal varia, e sua aceleração permanece constante.
c) aceleração e velocidades variam.
d) velocidades horizontal e vertical são variáveis.
e) velocidades vertical e horizontal são constantes.

Soluções para a tarefa

Respondido por anaribeiro170604
0

Resposta:

Aplicando a Equação de Torricelli:

v^{2} = v_{0}^{2} + 2g\Delta sv

2

=v

0

2

+2gΔs

A altura máxima ocorre quando a velocidade é zero.

6^{2} = 0^{2} + 2g \times 1,86

2

=0

2

+2g×1,8

36 = 3,6g36=3,6g

\boxed{g = 10 \: m/s^2}

g=10m/s

2

A aceleração da gravidade na lua vale 1/6 de "g"

Aplicamos a Equação de Torricelli novamente. Desta vez, multiplicando "g" por 1/6 e sem substituir ∆s.

6^{2} = 0^{2} + 2 \times \frac{1}{6} \times 10 \times \Delta s6

2

=0

2

+2×

6

1

×10×Δs

36 = \frac{20}{6} \times \Delta s36=

6

20

×Δs

\frac{36 \times 6}{20} = \Delta s

20

36×6

=Δs

\boxed{\Delta s = 10,8 \: m}

Δs=10,8m

Na Lua o objeto atingirá a altura de 10,8 metros.

7) resposta A


anaribeiro170604: Vou fazer a 7 agora
Perguntas interessantes