Matemática, perguntado por mel656, 1 ano atrás

Me ajudem plmds, preciso disso para passar.

Determine o conjunto verdade das equações exponenciais

Anexos:

Soluções para a tarefa

Respondido por robertocarlos5otivr9
1
a) 8^{x}=32

(2^3)^{x}=2^{5}

2^{3x}=2^{5}

3x=5

\boxed{x=\dfrac{5}{3}}

\text{S}=\{\frac{5}{3}\}


b) 25^{x}=625

(5^2)^{x}=5^{4}

5^{2x}=5^{4}

2x=4

x=\dfrac{4}{2}

\boxed{x=2}

\text{S}=\{2\}


c) 9^{x}=\dfrac{1}{3}

(3^2)^{x}=3^{-1}

3^{2x}=3^{-1}

2x=-1

\boxed{x=-\dfrac{1}{2}}

\text{S}=\{-\frac{1}{2}\}


d) \left(\dfrac{9}{25}\right)^{2x}=\dfrac{3}{5}

\left[\left(\dfrac{3}{5}\right)^{2}\right]^{2x}=\dfrac{3}{5}

\left(\dfrac{3}{5}\right)^{4x}=\left(\dfrac{3}{5}\right)^{1}

4x=1

\boxed{x=\dfrac{1}{4}}

\text{S}=\{\frac{1}{4}\}


e) 2^{x+4}=16

2^{x+4}=2^{4}

x+4=4

x=4-4

\boxed{x=0}

\text{S}=\{0\}


f) 5^{x}=\sqrt{5}

5^{x}=5^{\frac{1}{2}}

\boxed{x=\dfrac{1}{2}}

\text{S}=\{\frac{1}{2}\}


g) 5^{2x+1}=\dfrac{1}{625}

5^{2x+1}=5^{-4}

2x+1=-4

2x=-5

\boxed{x=-\dfrac{5}{2}}

\text{S}=\{-\frac{5}{2}\}


h) 25^{x+2}=1

25^{x+2}=25^{0}

x+2=0

\boxed{x=-2}

\text{S}=\{-2\}


i) 0,01^{9x-1}=0,01^{0}

9x-1=0

9x=1

\boxed{x=\dfrac{1}{9}}

\text{S}=\{\frac{1}{9}\}


j) 32^{x+3}=\sqrt[3]{2}

(2^5)^{x+3}=2^{\frac{1}{3}}

2^{5x+15}=2^{\frac{1}{3}}

5x+15=\dfrac{1}{3}

15x+45=1

15x=-44

\boxed{x=-\dfrac{44}{15}}

\text{S}=\{-\frac{44}{15}\}


k) 5^{x^2+2x}=1

5^{x^2+2x}=5^{0}

x^2+2x=0

x\cdot(x+2)=0

\boxed{x'=0}

x+2=0 \iff \boxed{x"=-2}

\text{S}=\{-2,0\}
Perguntas interessantes