Me ajudem nessa por favor
Soluções para a tarefa
Resposta:
x 2 sen(x) ∫(x)=y (x y)
0 2sen(0) 2*0 0 0
π/2 2sen(π/2) 2*1 π/2 2
π 2sen(π) 2*0 π 0
3π/2 2sen(3π/2) 2*-1 3π/2 -2
2π 2sen(2π) 2*0 2π 0
x 3sen(x) ∫(x)=y (x y)
0 3sen(0) 3*0 0 0
π/2 3sen(π/2) 3*1 π/2 3
π 3sen(π) 3*0 π 0
3π/2 3sen(3π/2) 3*-1 3π/2 -3
2π 3sen(2π) 3*0 2π 0
x 7sen(x)
x x 7 sen(x) ∫(x)=y (x y)
0 7sen(0) 7*0 0 0
π/2 7sen(π/2) 7*1 π/2 7
π 7sen(π) 7*0 π 0
3π/2 7sen(3π/2) 7*-1 3π/2 -7
2π 7sen(2π) 7*0 2π 0
x -8sen(x) ∫(x)=y (x y)
0 -8sen(0) -8*0 0 0
π/2 -8sen(π/2) -8*1 π/2 -8
π -8sen(π) -8*0 π 0
3π/2 -8sen(3π/2) -8*-1 3π/2 8
2π -8sen(2π) -8*0 2π 0
x -10 sen(x) ∫(x)=y (x y)
0 -10sen(0) -10*0 0 0
π/2 -10sen(π/2) -10*1 π/2 -10
π 2sen(π) -10*0 π 0
3π/2 -10sen(3π/2) -10*-1 3π/2 10
2π -10sen(2π) -10*0 2π 0
x 4+sen(x) ∫(x)=y (x y)
0 4+sen(0) 4+0 0 4
π/2 4+sen(π/2) 4+1 π/2 5
π 4πsen(π) 4+0 π 4
3π/2 4sen(3π/2) 4+(-1 ) 3π/2 3
2π 2sen(2π) 4+0 2π 4
Explicação passo-a-passo: