Matemática, perguntado por alepluto, 1 ano atrás

me ajudem integração de Fraçoes parciais.
5X²+20X+6/x³+2X²+x

Soluções para a tarefa

Respondido por Usuário anônimo
2
Bom dia Alepluto!

Solução!

\displaystyle\int \frac{5 x^{2} +20x+6}{ x^{3} 3+2x+x}\\\\\\\

Veja que o grau do expoente do denominador é maior,vamos fatorar.

\displaystyle\int \frac{5 x^{2} +20x+6}{ x^{3} +2 x^{2} +x}=\displaystyle\int \frac{5 x^{2} +20x +6}{ x(x^{2} +2x+1)}=\displaystyle\int \frac{5 x^{2} +20x+6}{(x)(x+1)(x+1)} }

Fazendo!

 \dfrac{A}{x}+ \dfrac{B}{(x+1)}+ \dfrac{C}{(x+1)^{2} }=  \dfrac{[A(x+1)^{2}+B(x+1).x+x] }{x(x+1)^{2} }


\dfrac{[A(x+1)^{2}+B(x+1).x+x] }{x(x+1)^{2} } =\dfrac{5 x^{2} +20x +6}{ x(x^{2})} \\\\

\dfrac{[A(x+1)^{2}+B(x+1).x+C.x] }{x(x+1)^{2} } =\dfrac{5 x^{2} +20x +6}{ x(x+1)^{2}} \\\\\\
A(x+1)^{2}+B(x+1).x+C.x=5 x^{2} +20x +6\\\\\\
Sendo ~~x=1\\\\
-9=A(0)+B(0).-1+C(-1)\\\\\\
C=9\\\\\\\
Sendo~~ x=0\\\\\\
A=6\\\\\\
Sendo x=1\\\\\\
31=4A+2.B+C\\\\\
31=4.6+2.B+9\\\\\
31=24+2B+9\\\\\\
31-24-9=2B\\\\\\\
2B=-2\\\\\
B= \dfrac{-2}{2}\\\\\\
B=-1

Retomando a integral

\displaystyle\int \frac{5 x^{2} +20x+6}{ x^{3} 3+2x+x}= \frac{6}{x}+ \frac{-1}{x+1} + \frac{9}{x+1}\\\\\\\\

\displaystyle\int \frac{A}{x}+ \frac{B}{x+1} + \frac{C}{(x+1)^{2} }dx\\\\\\  

Observando ~~a~~ tabela ~~de ~~derivadas~~encontramos.\\\\\\\

\displaystyle\int \frac{5 x^{2} +20x+6}{ x^{3} 3+2x+x}=6ln|x|-ln|x+1|- \frac{9}{(x+1)} +c

Bom dia! 

Bons estudos!


Perguntas interessantes