Matemática, perguntado por iarakathelin, 1 ano atrás

ME AJUDEM FAÇAM AS QUE CONSEGUIREM 

Anexos:

Soluções para a tarefa

Respondido por korvo
1
Olá Lara,

use as propriedades:

loga+logb~\to~log(a*b)\\\\
loga-logb~\to~log\dfrac{a}{b}\\\\
logb^k~\to~k*logb\\\\
log_bn=k~\to~n=b^k\\\\
log_kk=1

___________________________

Como as incógnitas estão no logaritmando, vamos impor a sua condição:

x>0

___________________________

log_4(x+ x^{2} )= \dfrac{1}{2}\\\\
x+ x^{2} =4^{ \tfrac{1}{2} }\\
 x^{2} +x=2\\
 x^{2} +x-2=0\\
(x-1)(x+2)=0\\\\
x'=1~~~~~~x''=-2\\\\
\boxed{S=\{1,-2\}}

________________

log_2(12-2^x)=2x\\
2^{2x}=12-2^x\\
(2^x)^2=12-2^x\\\\
2^x=b\\\\
b^2=12-b\\
b^2+b-12=0\\
(b-3)(b+4)=0\\\\
b'=3~~~~~~e~~~~~~b''=-4~(n\~ao~serve)\\\\
2^x=b\\
2^x=3\\
log2^x=log3\\
x*log2=log3\\
x*0,3010=0,477\\\\
x= \dfrac{0,477}{0,301}\\\\
\boxed{x\approx1,58}

________________

log_2(4-x)=log_2(x+1)+1\\
log_2(4-x)=log_2(x+1)+log_22\\
4-x=(x+1)*2\\
4-x=2x+2\\
-x-2x=2-4\\
-3x=-2\\\\
x= \dfrac{-2}{-3}\\\\
\boxed{x= \dfrac{2}{3}}

________________

log_2(4-x)-log_2(x+1)=1\\\\
log_2( \dfrac{4-x}{x+1})=1\\\\
 \dfrac{4-x}{x+1}=2^1\\\\
 \dfrac{4-x}{x+1}=2\\\\
4-x=2(x+1)\\
4-x=2x+2\\
-x-2x=2-4\\
-3x=-2\\\\
x= \dfrac{-2}{-3}\\\\
\boxed{x= \dfrac{2}{3}}

________________

-1=log_5( \dfrac{2x}{x+1})\\\\
log_5( \dfrac{2x}{x+1})=-1\\\\
 \dfrac{2x}{x+1}=5^{-1}\\\\
 \dfrac{2x}{x+1} = \dfrac{1}{5}\\\\
5*2x=x+1\\
10x=x+1\\
10x-x=1\\
9x=1\\\\
\boxed{x= \dfrac{1}{9}}

________________

logx=log(3x+5)\\
x=3x+5\\
x-3x=5\\
-2x=5\\\\
x=- \dfrac{5}{2}~\to~n\~ao~atende~a~condic\~ao~de~exist\^encia\\\\
\boxed{S=\{\varnothing\}}

________________

log2+log(x+1)-logx=1\\
log2*(x+1)-logx=1\\\\
log( \dfrac{2x+2}{x})=1\\\\
log_{10}( \dfrac{2x+2}{x})=1\\\\
 \dfrac{2x+2}{x}=10^1\\\\
 \dfrac{2x+2}{x}=10\\\\
2x+2=10*x\\
2x+2=10x\\
10x-2x=2\\
8x=2\\\\
x= \dfrac{2}{8}\\\\
\boxed{x= \dfrac{1}{4}}


Espero ter ajudado e tenha ótimos estudos =))
Perguntas interessantes