me ajudem!!!! Determine o conjunto verdade:
A- cos 4x= cos x
B- cos (2x+pi/3)= cos (x- pi/3)
C- cos (2x- pi) = - 1/2
D- 3tg x + √3=0
E- sen x+ cos 2x=1
Soluções para a tarefa
Respondido por
1
a)
![cos(4x)=cos(x) \\ 4x= \frac{+}{-}x+k2\pi \\ x_{1} = \frac{2k \pi}{3} \\ x_{2} =\frac{2k \pi}{5} cos(4x)=cos(x) \\ 4x= \frac{+}{-}x+k2\pi \\ x_{1} = \frac{2k \pi}{3} \\ x_{2} =\frac{2k \pi}{5}](https://tex.z-dn.net/?f=cos%284x%29%3Dcos%28x%29+%5C%5C+4x%3D+%5Cfrac%7B%2B%7D%7B-%7Dx%2Bk2%5Cpi+%5C%5C+x_%7B1%7D+%3D+%5Cfrac%7B2k+%5Cpi%7D%7B3%7D+%5C%5C+x_%7B2%7D+%3D%5Cfrac%7B2k+%5Cpi%7D%7B5%7D)
S = {x∈R|x=
ou x
}
b)
![cos (2x+\frac{ \pi}{3})= cos (x-\frac{ \pi}{3}) \\ (2x+\frac{ \pi}{3})=\frac{+}{-}(x-\frac{ \pi}{3})+k2 \pi \\ x_{1} =- \frac{2 \pi }{3} +k2 \pi \\ x_{2}= \frac{k2 \pi }{3} cos (2x+\frac{ \pi}{3})= cos (x-\frac{ \pi}{3}) \\ (2x+\frac{ \pi}{3})=\frac{+}{-}(x-\frac{ \pi}{3})+k2 \pi \\ x_{1} =- \frac{2 \pi }{3} +k2 \pi \\ x_{2}= \frac{k2 \pi }{3}](https://tex.z-dn.net/?f=cos+%282x%2B%5Cfrac%7B+%5Cpi%7D%7B3%7D%29%3D+cos+%28x-%5Cfrac%7B+%5Cpi%7D%7B3%7D%29+%5C%5C+%282x%2B%5Cfrac%7B+%5Cpi%7D%7B3%7D%29%3D%5Cfrac%7B%2B%7D%7B-%7D%28x-%5Cfrac%7B+%5Cpi%7D%7B3%7D%29%2Bk2+%5Cpi+%5C%5C++x_%7B1%7D+%3D-+%5Cfrac%7B2+%5Cpi+%7D%7B3%7D+%2Bk2+%5Cpi++%5C%5C+x_%7B2%7D%3D+%5Cfrac%7Bk2+%5Cpi+%7D%7B3%7D+)
S = {x∈R|x=
ou
}
c)
![cos (2x-\pi) = -1/2 \\ cos (2x- pi) =-cos(\frac{\pi }{3}) \\ (2x-\pi)=\frac{+}{-}(\frac{\pi }{3})+2k \pi \\ x_{1}= \frac{4 \pi }{6}+k \pi \\ x_{2}= \frac{ \pi }{3} +k \pi cos (2x-\pi) = -1/2 \\ cos (2x- pi) =-cos(\frac{\pi }{3}) \\ (2x-\pi)=\frac{+}{-}(\frac{\pi }{3})+2k \pi \\ x_{1}= \frac{4 \pi }{6}+k \pi \\ x_{2}= \frac{ \pi }{3} +k \pi](https://tex.z-dn.net/?f=cos+%282x-%5Cpi%29+%3D+-1%2F2+%5C%5C+cos+%282x-+pi%29+%3D-cos%28%5Cfrac%7B%5Cpi+%7D%7B3%7D%29+%5C%5C+%282x-%5Cpi%29%3D%5Cfrac%7B%2B%7D%7B-%7D%28%5Cfrac%7B%5Cpi+%7D%7B3%7D%29%2B2k+%5Cpi+%5C%5C+x_%7B1%7D%3D++%5Cfrac%7B4+%5Cpi+%7D%7B6%7D%2Bk+%5Cpi++%5C%5C+x_%7B2%7D%3D+%5Cfrac%7B+%5Cpi+%7D%7B3%7D+%2Bk+%5Cpi+)
S = {x∈R|x=
ou
}
d)
![3tg(x) + \sqrt{3}=0 \\ tg(x)=-\frac{\sqrt{3} }{3} \\ tg(x)=-tg(\frac{\sqrt{3} }{3}) \\ tg(x)=tg( \pi -\frac{\sqrt{3} }{3}) \\ x=(\pi -\frac{\sqrt{3} }{3})+k \pi \\ x=(1+k)\pi -\frac{\sqrt{3} }{3} 3tg(x) + \sqrt{3}=0 \\ tg(x)=-\frac{\sqrt{3} }{3} \\ tg(x)=-tg(\frac{\sqrt{3} }{3}) \\ tg(x)=tg( \pi -\frac{\sqrt{3} }{3}) \\ x=(\pi -\frac{\sqrt{3} }{3})+k \pi \\ x=(1+k)\pi -\frac{\sqrt{3} }{3}](https://tex.z-dn.net/?f=3tg%28x%29+%2B+%5Csqrt%7B3%7D%3D0+%5C%5C+tg%28x%29%3D-%5Cfrac%7B%5Csqrt%7B3%7D+%7D%7B3%7D++%5C%5C+tg%28x%29%3D-tg%28%5Cfrac%7B%5Csqrt%7B3%7D+%7D%7B3%7D%29+%5C%5C+tg%28x%29%3Dtg%28+%5Cpi+-%5Cfrac%7B%5Csqrt%7B3%7D+%7D%7B3%7D%29+%5C%5C+x%3D%28%5Cpi+-%5Cfrac%7B%5Csqrt%7B3%7D+%7D%7B3%7D%29%2Bk+%5Cpi++%5C%5C+x%3D%281%2Bk%29%5Cpi+-%5Cfrac%7B%5Csqrt%7B3%7D+%7D%7B3%7D)
S = {x∈R|x=(1+k)\pi -\frac{\sqrt{3} }{3}}
e)
![sen(x)+cos(2x)=1 sen(x)+cos(2x)=1](https://tex.z-dn.net/?f=sen%28x%29%2Bcos%282x%29%3D1)
Observações:
![cos(2x)=cos^{2}(x)-sen^{2}(x) cos(2x)=cos^{2}(x)-sen^{2}(x)](https://tex.z-dn.net/?f=cos%282x%29%3Dcos%5E%7B2%7D%28x%29-sen%5E%7B2%7D%28x%29)
![sen^{2}(x)+cos^{2}(x)=1 sen^{2}(x)+cos^{2}(x)=1](https://tex.z-dn.net/?f=sen%5E%7B2%7D%28x%29%2Bcos%5E%7B2%7D%28x%29%3D1)
![sen(x)+cos^{2}(x)-sen^{2}(x)=sen^{2}(x)+cos^{2}(x) \\ sen(x)-2sen^{2}(x)=0 \\ sen(x)(1-2sen(x)) sen(x)+cos^{2}(x)-sen^{2}(x)=sen^{2}(x)+cos^{2}(x) \\ sen(x)-2sen^{2}(x)=0 \\ sen(x)(1-2sen(x))](https://tex.z-dn.net/?f=sen%28x%29%2Bcos%5E%7B2%7D%28x%29-sen%5E%7B2%7D%28x%29%3Dsen%5E%7B2%7D%28x%29%2Bcos%5E%7B2%7D%28x%29+%5C%5C+sen%28x%29-2sen%5E%7B2%7D%28x%29%3D0+%5C%5C+sen%28x%29%281-2sen%28x%29%29)
S=[0,
]
Qualquer nova dúvida, entre em contato.
Se gostou da resposta, escolha-a como a melhor.
S = {x∈R|x=
b)
S = {x∈R|x=
c)
S = {x∈R|x=
d)
S = {x∈R|x=(1+k)\pi -\frac{\sqrt{3} }{3}}
e)
Observações:
S=[0,
Qualquer nova dúvida, entre em contato.
Se gostou da resposta, escolha-a como a melhor.
Perguntas interessantes
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás
Geografia,
1 ano atrás