[MATRIZ INVERSA]
Seja A-¹ a inversa de
A= [7 -3]
___[2 -1] - Determine:
a) (A-¹)² + A²
biamidori:
Não consegui fazer essa ;c // Obrigada a quem me ajudar!
Soluções para a tarefa
Respondido por
24
Regra prática para encontrar a inversa de matrizes
:
Calcule o determinante da matriz a ser invertida. Só será possível inverter se o determinante for diferente de zero.
Troque os elementos da diagonal principal de posição entre si, e troque os sinais dos elementos da diagonal secundária.
Multiplique a matriz obtida pelo inverso do determinante da matriz original. O resultado é a matriz já invertida.
Então, vamos achar a inversa da matriz
![\mathbf{A}=\left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ] \mathbf{A}=\left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cmathbf%7BA%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+7%26amp%3B-3%5C%5C+2%26amp%3B-1+%5Cend%7Barray%7D+%5Cright+%5D)
O determinante de
é
![\det \mathbf{A}=\det \left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ]\\ \\ \det \mathbf{A}=7\cdot \left(-1 \right )-2\cdot \left(-3 \right ) \\ \\ \det \mathbf{A}=-7+6\\ \\ \det \mathbf{A}=-1 \neq 0 \det \mathbf{A}=\det \left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ]\\ \\ \det \mathbf{A}=7\cdot \left(-1 \right )-2\cdot \left(-3 \right ) \\ \\ \det \mathbf{A}=-7+6\\ \\ \det \mathbf{A}=-1 \neq 0](https://tex.z-dn.net/?f=%5Cdet+%5Cmathbf%7BA%7D%3D%5Cdet+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+7%26amp%3B-3%5C%5C+2%26amp%3B-1+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5Cdet+%5Cmathbf%7BA%7D%3D7%5Ccdot+%5Cleft%28-1+%5Cright+%29-2%5Ccdot+%5Cleft%28-3+%5Cright+%29+%5C%5C+%5C%5C+%5Cdet+%5Cmathbf%7BA%7D%3D-7%2B6%5C%5C+%5C%5C+%5Cdet+%5Cmathbf%7BA%7D%3D-1+%5Cneq+0)
Como o determinante é diferente de zero, então
possui inversa.
Trocando os elementos da diagonal principal de de posição entre si, e trocando os sinais dos elementos da diagonal secundária de
, obtemos a seguinte matriz:
![\left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ] \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-1%26amp%3B3%5C%5C+-2%26amp%3B7+%5Cend%7Barray%7D+%5Cright+%5D)
A inversa de
, é a matriz obtida no passo anterior multiplicada pelo inverso do determinante de
:
![\mathbf{A}^{-1}=\dfrac{1}{\det \mathbf{A}}\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=\dfrac{1}{-1}\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=-1\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=\left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ] \mathbf{A}^{-1}=\dfrac{1}{\det \mathbf{A}}\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=\dfrac{1}{-1}\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=-1\cdot \left[ \begin{array}{rr} -1&3\\ -2&7 \end{array} \right ]\\ \\ \\ \mathbf{A}^{-1}=\left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cmathbf%7BA%7D%5E%7B-1%7D%3D%5Cdfrac%7B1%7D%7B%5Cdet+%5Cmathbf%7BA%7D%7D%5Ccdot+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-1%26amp%3B3%5C%5C+-2%26amp%3B7+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B-1%7D%3D%5Cdfrac%7B1%7D%7B-1%7D%5Ccdot+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-1%26amp%3B3%5C%5C+-2%26amp%3B7+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B-1%7D%3D-1%5Ccdot+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-1%26amp%3B3%5C%5C+-2%26amp%3B7+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B-1%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+1%26amp%3B-3%5C%5C+2%26amp%3B-7+%5Cend%7Barray%7D+%5Cright+%5D)
a)
![\bullet\;\;\left(\mathbf{A}^{-1} \right )^{2}=\mathbf{A}^{-1} \cdot \mathbf{A}^{-1}\\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ]\cdot \left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1\cdot 1+\left(-3 \right )\cdot 2\;\;&\;\;1\cdot \left(-3 \right )+\left(-3 \right )\cdot \left(-7 \right )\\ 2\cdot 1+\left(-7 \right )\cdot 2\;\;&\;\;2\cdot \left(-3 \right )+\left(-7 \right )\cdot \left(-7 \right ) \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1-6\;\;&\;\;-3+21\\ 2-14\;\;&\;\;-6+49 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} -5&18\\-12&43 \end{array} \right ] \bullet\;\;\left(\mathbf{A}^{-1} \right )^{2}=\mathbf{A}^{-1} \cdot \mathbf{A}^{-1}\\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ]\cdot \left[ \begin{array}{rr} 1&-3\\ 2&-7 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1\cdot 1+\left(-3 \right )\cdot 2\;\;&\;\;1\cdot \left(-3 \right )+\left(-3 \right )\cdot \left(-7 \right )\\ 2\cdot 1+\left(-7 \right )\cdot 2\;\;&\;\;2\cdot \left(-3 \right )+\left(-7 \right )\cdot \left(-7 \right ) \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} 1-6\;\;&\;\;-3+21\\ 2-14\;\;&\;\;-6+49 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}=\left[ \begin{array}{rr} -5&18\\-12&43 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cbullet%5C%3B%5C%3B%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%3D%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Ccdot+%5Cmathbf%7BA%7D%5E%7B-1%7D%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+1%26amp%3B-3%5C%5C+2%26amp%3B-7+%5Cend%7Barray%7D+%5Cright+%5D%5Ccdot+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+1%26amp%3B-3%5C%5C+2%26amp%3B-7+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+1%5Ccdot+1%2B%5Cleft%28-3+%5Cright+%29%5Ccdot+2%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B1%5Ccdot+%5Cleft%28-3+%5Cright+%29%2B%5Cleft%28-3+%5Cright+%29%5Ccdot+%5Cleft%28-7+%5Cright+%29%5C%5C+2%5Ccdot+1%2B%5Cleft%28-7+%5Cright+%29%5Ccdot+2%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B2%5Ccdot+%5Cleft%28-3+%5Cright+%29%2B%5Cleft%28-7+%5Cright+%29%5Ccdot+%5Cleft%28-7+%5Cright+%29+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+1-6%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B-3%2B21%5C%5C+2-14%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B-6%2B49+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-5%26amp%3B18%5C%5C-12%26amp%3B43+%5Cend%7Barray%7D+%5Cright+%5D)
![\bullet\;\;\mathbf{A}^{2}=\mathbf{A} \cdot \mathbf{A}\\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ] \cdot \left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 7\cdot 7+\left(-3 \right )\cdot 2\;\;&\;\;7\cdot \left(-3 \right )+\left(-3 \right )\cdot \left(-1 \right )\\ 2\cdot 7+\left(-1 \right )\cdot 2\;\;&\;\;2\cdot \left(-3 \right )+\left(-1 \right )\cdot \left(-1 \right ) \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 49-6\;\;&\;\;-21+3\\ 14-2\;\;&\;\;-6+1 \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 43&-18\\ 12&-5 \end{array} \right ] \bullet\;\;\mathbf{A}^{2}=\mathbf{A} \cdot \mathbf{A}\\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ] \cdot \left[ \begin{array}{rr} 7&-3\\ 2&-1 \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 7\cdot 7+\left(-3 \right )\cdot 2\;\;&\;\;7\cdot \left(-3 \right )+\left(-3 \right )\cdot \left(-1 \right )\\ 2\cdot 7+\left(-1 \right )\cdot 2\;\;&\;\;2\cdot \left(-3 \right )+\left(-1 \right )\cdot \left(-1 \right ) \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 49-6\;\;&\;\;-21+3\\ 14-2\;\;&\;\;-6+1 \end{array} \right ]\\ \\ \\ \mathbf{A}^{2}=\left[ \begin{array}{rr} 43&-18\\ 12&-5 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cbullet%5C%3B%5C%3B%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cmathbf%7BA%7D+%5Ccdot+%5Cmathbf%7BA%7D%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+7%26amp%3B-3%5C%5C+2%26amp%3B-1+%5Cend%7Barray%7D+%5Cright+%5D+%5Ccdot+%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+7%26amp%3B-3%5C%5C+2%26amp%3B-1+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+7%5Ccdot+7%2B%5Cleft%28-3+%5Cright+%29%5Ccdot+2%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B7%5Ccdot+%5Cleft%28-3+%5Cright+%29%2B%5Cleft%28-3+%5Cright+%29%5Ccdot+%5Cleft%28-1+%5Cright+%29%5C%5C+2%5Ccdot+7%2B%5Cleft%28-1+%5Cright+%29%5Ccdot+2%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B2%5Ccdot+%5Cleft%28-3+%5Cright+%29%2B%5Cleft%28-1+%5Cright+%29%5Ccdot+%5Cleft%28-1+%5Cright+%29+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+49-6%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B-21%2B3%5C%5C+14-2%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B-6%2B1+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+43%26amp%3B-18%5C%5C+12%26amp%3B-5+%5Cend%7Barray%7D+%5Cright+%5D)
![\bullet\;\;\left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} -5&18\\-12&43 \end{array} \right ]+\left[ \begin{array}{rr} 43&-18\\ 12&-5 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} -5+43\;\;&\;\;18-18\\-12+12&43-5 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} 38&0\\0&38 \end{array} \right ] \bullet\;\;\left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} -5&18\\-12&43 \end{array} \right ]+\left[ \begin{array}{rr} 43&-18\\ 12&-5 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} -5+43\;\;&\;\;18-18\\-12+12&43-5 \end{array} \right ]\\ \\ \\ \left(\mathbf{A}^{-1} \right )^{2}+\mathbf{A}^{2}=\left[ \begin{array}{rr} 38&0\\0&38 \end{array} \right ]](https://tex.z-dn.net/?f=%5Cbullet%5C%3B%5C%3B%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%2B%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-5%26amp%3B18%5C%5C-12%26amp%3B43+%5Cend%7Barray%7D+%5Cright+%5D%2B%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+43%26amp%3B-18%5C%5C+12%26amp%3B-5+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%2B%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+-5%2B43%5C%3B%5C%3B%26amp%3B%5C%3B%5C%3B18-18%5C%5C-12%2B12%26amp%3B43-5+%5Cend%7Barray%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cmathbf%7BA%7D%5E%7B-1%7D+%5Cright+%29%5E%7B2%7D%2B%5Cmathbf%7BA%7D%5E%7B2%7D%3D%5Cleft%5B+%5Cbegin%7Barray%7D%7Brr%7D+38%26amp%3B0%5C%5C0%26amp%3B38+%5Cend%7Barray%7D+%5Cright+%5D)
Então, vamos achar a inversa da matriz
Como o determinante é diferente de zero, então
a)
Perguntas interessantes
Matemática,
1 ano atrás
Música,
1 ano atrás
Direito,
1 ano atrás
Português,
1 ano atrás
Inglês,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás