Matemática (Raiz,gráfico classificação e cálculo) desses exercícios?
Anexos:

Soluções para a tarefa
Respondido por
1
Uma função exponencial pode ser escrita na forma
, com
e
.
Se
, dizemos que, a função é crescente.
Se
, dizemos que, a função é decrescente.
a)

Função crescente.
b)

Função crescente.
c)

Função decrescente.
d)
.

Função decrescente.
e)

Função crescente.
f)

Função decrescente.
g)

Função crescente.
h)

Função crescente.
i)

Função decrescente.
j)

Função decrescente.
Se
Se
a)
Função crescente.
b)
Função crescente.
c)
Função decrescente.
d)
Função decrescente.
e)
Função crescente.
f)
Função decrescente.
g)
Função crescente.
h)
Função crescente.
i)
Função decrescente.
j)
Função decrescente.
Anexos:




Usuário anônimo:
moça sem querer abusar tem como mandar as contas armadas obgg
Perguntas interessantes
Matemática,
1 ano atrás
Química,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás