marcos gastou de seu salario1/3 de seu salario no supermercado 2/5 de seu salari no pagamento de contas e ainda lhe sobrou R$520,00.Pode-se dizer que 1/4 do salario de marcos é igual a:
Soluções para a tarefa
Respondido por
0
-> 1/3 = 0,333...
-> 2/5 = 0,4
-> 1/4 = 0,25
-> 1/3 + 2/5 = 0,733
x-0,733x = 520
0,267x = 520
x = 520/0,267
x = 709,09
y = x*1/4
y = 709,09*0,25
y = 177,27
Resposta: Pode se dizer que 1/4 do salário de Marcos é R$ 177,27.
-> 2/5 = 0,4
-> 1/4 = 0,25
-> 1/3 + 2/5 = 0,733
x-0,733x = 520
0,267x = 520
x = 520/0,267
x = 709,09
y = x*1/4
y = 709,09*0,25
y = 177,27
Resposta: Pode se dizer que 1/4 do salário de Marcos é R$ 177,27.
Respondido por
4
Chamemos o salário de Marcos de x. Dizer que ele gastou 1/3 do salário quer dizer que ele gastou x*1/3. Após disso, ele gastou 2/5 do salário com contas, ou seja, ele gastou x*2/5. Para calcular quanto ele tem do salário agora precisamos subtrair os gastos do que ele tinha inicialmente:
![x-x.\frac{1}{3}-x.\frac{2}{5} = \frac{15x-5x-6x}{15} = \frac{4x}{15} x-x.\frac{1}{3}-x.\frac{2}{5} = \frac{15x-5x-6x}{15} = \frac{4x}{15}](https://tex.z-dn.net/?f=x-x.%5Cfrac%7B1%7D%7B3%7D-x.%5Cfrac%7B2%7D%7B5%7D+%3D+%5Cfrac%7B15x-5x-6x%7D%7B15%7D+%3D+%5Cfrac%7B4x%7D%7B15%7D)
Temos que, após os gastos, sobrou 4/15 do salário de Marcos, mas isso é igual a 520 reais, pelo que foi dito. Igualando as duas expressões temos:
![\frac{4x}{15}=520 \Rightarrow x=\frac{15.520}{4} \Rightarrow \boxed{x=1950} \frac{4x}{15}=520 \Rightarrow x=\frac{15.520}{4} \Rightarrow \boxed{x=1950}](https://tex.z-dn.net/?f=%5Cfrac%7B4x%7D%7B15%7D%3D520+%5CRightarrow+x%3D%5Cfrac%7B15.520%7D%7B4%7D+%5CRightarrow+%5Cboxed%7Bx%3D1950%7D)
Agora que temos o valor do salário de Marcos podemos calcular 1/4 desse valor:
![\frac{x}{4}=\frac{1950}{4} \Rightarrow \boxed{\boxed{\frac{x}{4}=\mathrm{R}\$ \ 487,50}} \frac{x}{4}=\frac{1950}{4} \Rightarrow \boxed{\boxed{\frac{x}{4}=\mathrm{R}\$ \ 487,50}}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B4%7D%3D%5Cfrac%7B1950%7D%7B4%7D+%5CRightarrow+%5Cboxed%7B%5Cboxed%7B%5Cfrac%7Bx%7D%7B4%7D%3D%5Cmathrm%7BR%7D%5C%24+%5C+487%2C50%7D%7D)
Temos que, após os gastos, sobrou 4/15 do salário de Marcos, mas isso é igual a 520 reais, pelo que foi dito. Igualando as duas expressões temos:
Agora que temos o valor do salário de Marcos podemos calcular 1/4 desse valor:
Perguntas interessantes
Lógica,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás