Matemática, perguntado por anacarolinasarda50, 1 ano atrás

Marcelo faltou à escola e pediu a um colega o caderno emprestado para anotar o que havia perdido naquele dia. Durante a transcrição das atividades, Marcelo se deparou com o seguinte problema: Calcule o valor de tgx = 1 , em que x é um arco da primeira volta positiva. Marcelo começou a copiar, mas logo ele percebeu o conjunto solução do problema estava apagado. A parte que foi apagada do caderno é:

A) S= {pi/4 , 3pi/4}

B) S= {pi/4 , 5pi/4}

C) S= {pi/4 , 7pi/4}

D) S= {3pi/4 , 7pi/4}

E) S= {5pi/4 , 7pi/4}

Soluções para a tarefa

Respondido por julia754226
11

Quando pensamos nos arcos notáveis qual é o ângulo que tem tangente igual a 1???

45°(π/4)

Porém, apesar do seno de 135° ser o mesmo que de 45° e o cosseno ser o mesmo valor só que negativo, dividindo o seno pelo cosseno achariamos a tangente de 135° igual a -1.

Portanto, devemos pensar em um ângulo que é simétrico a 45° e que o seno e cosseno são negativos, para que a tangente seja positiva.

180°+45°=225°

Pensando no ciclo trigonométricas o 225° terá tangente igual a 1, pois o seno é -√2/2, já que está no terceiro quadrante e é simétrico ao 45° e que o cosseno também será negativo e igual a -√2/2.

225°=5π/4

Já que é pedido só a primeira volta, o conjunto solução

S={π/4, 5π/4}

Letra B

Perguntas interessantes