Matemática, perguntado por mafenascimento47, 10 meses atrás

Logaritmos
Me ajudem pfvrrr.

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Resposta:

1.

a)

x =  log_{3}(27)

x =  log_{3}( {3}^{3} )

x = 3

b)

x =  log_{ \frac{1}{5} }(125)

x =  log_{ {5}^{ - 1} }( {5}^{3} )

x =  -  log_{5}( {5}^{3} )

x =  - 3

c)

x =  log_{4}( \sqrt{32} )

x =  log_{ {2}^{2} }( \sqrt{ {2}^{5} } )

Pelas propriedades

 log_{ {a}^{ \beta } }(b)  =  \frac{1}{ \beta }  log_{a}(b)

 log_{a}( \sqrt[n]{b} )  =  log_{a}( {b}^{ \frac{1}{n} } )  =  \frac{1}{n}  log_{a}(b)

temos:

x =  \frac{1}{2}  log_{2}( {2}^{ \frac{5}{2} } )

x =  \frac{5}{4}

d)

x =  log_{ \frac{2}{3} }( \frac{8}{27} )

x =  log_{ \frac{2}{3} }( \frac{2}{3} )  ^{3}

x = 3

e)

x =  log_{2}( {2}^{ - 3} )

x =  - 3

f)

x =  log_{7}( \sqrt{7} )

x =  \frac{1}{2}

2.

a)

 log_{x}(8)  = 3

Temos pela definição de logaritmo:

 {x}^{3}  = 8

x =  \sqrt[3]{ {2}^{3} }

x = 2

b)

 log_{x}( \frac{1}{16} )  = 2

 log_{x}( {2}^{ - 4} )  = 2

 {x}^{2}  =  {2}^{ - 4}

x =  \frac{1}{4}

c)

 log_{2}(x)  = 5

x =  {2}^{5}

x = 32

d)

x =  log_{9}(27)

x =  log_{ {3}^{2} }( {3}^{3} )

x =  \frac{3}{2}

e)

x =  log_{ \frac{1}{2} }(32)

x =  log_{ {2}^{ - 1} }( {2}^{5} )

x =  - 5

3.

a)

 x = log( \frac{5 \times  {3}^{2} }{2} )

 x = log( \frac{45}{2} )

x =   log(45)  -  log(2)

x =  log( {3}^{2} \times 5 )  -  log(2)

x =  log( {3}^{2} )  +  log(5)  -  log(2)

x = 2 log(3)  +  log(5)  -  log(2)

b)

x =  log( \frac{ \sqrt[3]{5} \times  {3}^{2}  }{ {2}^{3} } )

x =   log( \frac{9 \sqrt[3]{5} }{8} )

x =  log(9 \sqrt[3]{5} )  -    log(8)

x =  log( {3}^{2} )  +  log( \sqrt[3]{5} )  -  log( {2}^{3} )

x = 2  log(3)  +  \frac{1}{3}  log(5)  - 3 log(2)

4.

Seja k a expressão, assim, temos:

k =  log_{x}(12 ^{ \frac{1}{3} } )

k =  \frac{1}{3}  log_{x}(3 \times 2 \times 2)

k =  \frac{1}{3}    log_{x}(3)  +   \frac{1}{3} log_{x}(2)  +  \frac{1}{3}  log_{x}(2)

k =  \frac{1}{3} (b + a + a)

k =  \frac{2a + b}{3}

5.

Seja k a expressão, dessa maneira:

k =  log_{a}(10 \times 10)

k =  log_{a}(5 \times 2 \times 5 \times 2)

k = 2 log_{a}(5)  + 2 log_{a}(2)

k = 2 \times 30 + 2 \times 20

k = 100

6.

a)

k =  log_{x}( \frac{ {a}^{3} }{ {b}^{2} . {c}^{4} } )

k =  log_{x}( {a}^{3} )  -  (log_{x}( {b}^{2} )  +   log_{x}( {c}^{4} )

k = 3 log_{x}(a)  - 2 log_{x}(b)   - 4 log_{x}(c)

k = 3 \times 8  - 2 \times 2 - 4 \times 1

k = 16

b)

k =  log_{x}( \frac{ \sqrt[3]{ab} }{c} )

k =  log_{x}( \sqrt[3]{ab} )  -  log_{x}(c)

 k =  \frac{1}{3}  log_{x}(ab)  -  log_{x}(c)

k =  \frac{1}{3}  log_{x}(a)  +  \frac{1}{3}  log_{x}(b)  -  log_{x}(c)

k =  \frac{1}{3}  \times 8 +  \frac{1}{3}  \times 2 + 1

k =  \frac{13}{3}

7.

a)

k =  log(24)

k =  log(3 \times  {2}^{3} )

k =   log(3)   + 3 log(2)

k = 3x + y

b)

k =  log(9 \sqrt{8} )

k =  log( {3}^{2} \times  {2}^{ \frac{3}{2} }  )

k = 2 log(3)  +  \frac{3}{2}  log(2)

k = 2y +  \frac{3}{2} x

8.

a)

 log_{x - 3}(9)  = 2

Pela propriedade

 log_{a}(f(x))  =  \alpha  \:  \: se  \:  \: f(x) =  {a}^{ \alpha }

temos:

(x - 3) ^{2}  = 9

x - 3 = 3

x = 6

b)

 log_{4}(2x + 10)  = 2

2x + 10 = 16

2x = 6

x = 3

c)

 log_{2}( log_{3}(x - 1) )  = 2

 log_{3}(x - 1)  = 4

x - 1 = 81

x = 82

d)

 log_{x + 1}( {x}^{2}  + 7)  = 2

(x + 1) ^{2}  =  {x}^{2} + 7

 {x}^{2}  + 7 =  {x}^{2}  + 2x + 1

7 = 2x + 1

x = 3


Usuário anônimo: da próxima vez escreva os problemas
Perguntas interessantes