Log4 cúbica de √2 /2 =x
Soluções para a tarefa
Respondido por
1
Vamos lá.
Veja, Marcielpaquini, que a resolução é simples.
Vamos tentar fazer tudo passo a passo para um melhor entendimento, como sempre costumamos proceder em nossas respostas.
i) Pede-se para resolver a seguinte expressão logarítmica:
log₄ [∛(2) / 2] = x ------ note: se você aplicar a definição de logaritmo, então isto que temos aqui é a mesma coisa que:
4ˣ = ∛(2) / 2 ---- multiplicando-se em cruz, teremos;
2*4ˣ = ∛(2) ---- veja que 4 = 2²; e ∛(2) = 2¹/³. Assim, ficaremos com:
2*(2²)ˣ = 2¹/³ ---- desenvolvendo, teremos:
2*2²*ˣ = 2¹/³
2*2²ˣ = 2¹/³ --- veja que o "2" que está no primeiro membro e que está sem expoente tem, na verdade, expoente igual a "1", apenas não se coloca. Mas é como se fosse assim:
2¹ * 2²ˣ = 2¹/³ --- note que, no 1º membro, temos uma multiplicação de potências da mesma base. Regra: conserva-se a base comum e somam-se os expoentes. Logo:
2¹⁺²ˣ = 2¹/³ ---- como as bases são iguais, então podemos igualar os expoentes, ficando:
1 + 2x = 1/3 ---- multiplicando-se em cruz, temos:
3*(1+2x) = 1 ---- efetuando o produto indicado no 1º membro, temos:
3+6x = 1 --- passando "3" para o 2º membro, temos:
6x = 1 - 3
6x = - 2
x = -2/6 --- simplificando-se numerador e denominador por "2", temos;
x = - 1/3 <--- Esta é a resposta. Ou seja, este é o valor de "x" da equação da sua questão.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Veja, Marcielpaquini, que a resolução é simples.
Vamos tentar fazer tudo passo a passo para um melhor entendimento, como sempre costumamos proceder em nossas respostas.
i) Pede-se para resolver a seguinte expressão logarítmica:
log₄ [∛(2) / 2] = x ------ note: se você aplicar a definição de logaritmo, então isto que temos aqui é a mesma coisa que:
4ˣ = ∛(2) / 2 ---- multiplicando-se em cruz, teremos;
2*4ˣ = ∛(2) ---- veja que 4 = 2²; e ∛(2) = 2¹/³. Assim, ficaremos com:
2*(2²)ˣ = 2¹/³ ---- desenvolvendo, teremos:
2*2²*ˣ = 2¹/³
2*2²ˣ = 2¹/³ --- veja que o "2" que está no primeiro membro e que está sem expoente tem, na verdade, expoente igual a "1", apenas não se coloca. Mas é como se fosse assim:
2¹ * 2²ˣ = 2¹/³ --- note que, no 1º membro, temos uma multiplicação de potências da mesma base. Regra: conserva-se a base comum e somam-se os expoentes. Logo:
2¹⁺²ˣ = 2¹/³ ---- como as bases são iguais, então podemos igualar os expoentes, ficando:
1 + 2x = 1/3 ---- multiplicando-se em cruz, temos:
3*(1+2x) = 1 ---- efetuando o produto indicado no 1º membro, temos:
3+6x = 1 --- passando "3" para o 2º membro, temos:
6x = 1 - 3
6x = - 2
x = -2/6 --- simplificando-se numerador e denominador por "2", temos;
x = - 1/3 <--- Esta é a resposta. Ou seja, este é o valor de "x" da equação da sua questão.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
adjemir:
Marcielpaquini, agradecemos-lhe pela melhor resposta. Continue a dispor e um cordial abraço.
Perguntas interessantes