Limite de h tendendo a -4 Raiz de 2 multiplicado por h ao quadrado - 8 (fecha raiz) +h sobre h+4
Anexos:
![](https://pt-static.z-dn.net/files/dbf/961ba6b58a5a0fdcd412a4eef238cb92.png)
Soluções para a tarefa
Respondido por
0
Olá! Apenas faça uma racionalização:
![\displaystyle \mathsf{ \lim_{h \to -4} \frac{\sqrt{2 \cdot (h^2-8)}+h}{h+4} } \\ \\ \\ \mathsf{ \lim_{h \to -4} \frac{\sqrt{2h^2-16}+h}{h+4} } \\ \\ \\ \mathsf{ \frac{\sqrt{2h^2-16}+h}{h+4} \cdot \frac{\sqrt{2h^2-16}-h}{\sqrt{2h^2-16}-h} } \\ \\ \\ \mathsf{ \frac{\sqrt{2h^2-16} \cdot \sqrt{2h^2-16}-h\sqrt{2h^2-16} + h \sqrt{2h^2-16} - h^2}{(h+4) \cdot (\sqrt{2h^2-16} - h) } } \displaystyle \mathsf{ \lim_{h \to -4} \frac{\sqrt{2 \cdot (h^2-8)}+h}{h+4} } \\ \\ \\ \mathsf{ \lim_{h \to -4} \frac{\sqrt{2h^2-16}+h}{h+4} } \\ \\ \\ \mathsf{ \frac{\sqrt{2h^2-16}+h}{h+4} \cdot \frac{\sqrt{2h^2-16}-h}{\sqrt{2h^2-16}-h} } \\ \\ \\ \mathsf{ \frac{\sqrt{2h^2-16} \cdot \sqrt{2h^2-16}-h\sqrt{2h^2-16} + h \sqrt{2h^2-16} - h^2}{(h+4) \cdot (\sqrt{2h^2-16} - h) } }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+-4%7D+%5Cfrac%7B%5Csqrt%7B2+%5Ccdot+%28h%5E2-8%29%7D%2Bh%7D%7Bh%2B4%7D+%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+-4%7D+%5Cfrac%7B%5Csqrt%7B2h%5E2-16%7D%2Bh%7D%7Bh%2B4%7D+%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7B%5Csqrt%7B2h%5E2-16%7D%2Bh%7D%7Bh%2B4%7D+%5Ccdot+%5Cfrac%7B%5Csqrt%7B2h%5E2-16%7D-h%7D%7B%5Csqrt%7B2h%5E2-16%7D-h%7D+%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7B%5Csqrt%7B2h%5E2-16%7D+%5Ccdot+%5Csqrt%7B2h%5E2-16%7D-h%5Csqrt%7B2h%5E2-16%7D+%2B+h+%5Csqrt%7B2h%5E2-16%7D+-+h%5E2%7D%7B%28h%2B4%29+%5Ccdot+%28%5Csqrt%7B2h%5E2-16%7D+-+h%29+%7D+%7D)
Daí:
![\displaystyle \mathsf{ \frac{(\sqrt{2h^2-16})^2 - h^2}{(h+4) \cdot (\sqrt{2h^2-16} - h) } } \\ \\ \\ \mathsf{ \frac{2h^2-16-h^2}{(h+4) \cdot (\sqrt{ 2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{h^2-16}{(h+4) \cdot (\sqrt{2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{(x-4) \cdot (x+4)}{(h+4) \cdot (\sqrt{2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{x-4}{\sqrt{2h^2-16} - h} } \\ \\ \\ \mathsf{ \frac{-4-4}{\sqrt{2 \cdot (-4)^2-16} - (-4)} = \boxed{-1}} \displaystyle \mathsf{ \frac{(\sqrt{2h^2-16})^2 - h^2}{(h+4) \cdot (\sqrt{2h^2-16} - h) } } \\ \\ \\ \mathsf{ \frac{2h^2-16-h^2}{(h+4) \cdot (\sqrt{ 2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{h^2-16}{(h+4) \cdot (\sqrt{2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{(x-4) \cdot (x+4)}{(h+4) \cdot (\sqrt{2h^2-16} - h)} } \\ \\ \\ \mathsf{ \frac{x-4}{\sqrt{2h^2-16} - h} } \\ \\ \\ \mathsf{ \frac{-4-4}{\sqrt{2 \cdot (-4)^2-16} - (-4)} = \boxed{-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Cfrac%7B%28%5Csqrt%7B2h%5E2-16%7D%29%5E2+-+h%5E2%7D%7B%28h%2B4%29+%5Ccdot+%28%5Csqrt%7B2h%5E2-16%7D+-+h%29+%7D+%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7B2h%5E2-16-h%5E2%7D%7B%28h%2B4%29+%5Ccdot+%28%5Csqrt%7B+2h%5E2-16%7D+-+h%29%7D+++%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7Bh%5E2-16%7D%7B%28h%2B4%29+%5Ccdot+%28%5Csqrt%7B2h%5E2-16%7D+-+h%29%7D+++%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7B%28x-4%29+%5Ccdot+%28x%2B4%29%7D%7B%28h%2B4%29+%5Ccdot+%28%5Csqrt%7B2h%5E2-16%7D+-+h%29%7D++%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7B+%5Cfrac%7Bx-4%7D%7B%5Csqrt%7B2h%5E2-16%7D+-+h%7D+++%7D+%5C%5C+%5C%5C+%5C%5C++%5Cmathsf%7B+%5Cfrac%7B-4-4%7D%7B%5Csqrt%7B2+%5Ccdot+%28-4%29%5E2-16%7D+-+%28-4%29%7D+%3D+%5Cboxed%7B-1%7D%7D+)
Daí:
Perguntas interessantes
Português,
11 meses atrás
Física,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás