Matemática, perguntado por teckorusso, 11 meses atrás

lim x → 2 x2+x-6 / x2-x-2

Anexos:

Soluções para a tarefa

Respondido por darktselibatsy
2

Resposta:

Para resolvermos \lim_{x \to \ 2}  \frac{x^2+x-6}{x^2-x-2} precisaremos da regra de L'Hospital, uma vez que quando sibstituímos 2 na equação, o denominador ficará 0. A regra de L'Hospital diz que devemos diferenciar o numerador e o denominador separadamente e depois substituir em x. Então:

\lim_{x \to \ 2} \frac{\frac{d}{dx}x^2+x-6}{\frac{d}{dx}x^2-x-2} = \frac{2x+1}{2x-1}

Agora é só substituir x por 2:

\lim_{x \to \ 2} \frac{2x+1}{2x-1} = \frac{2(2)+1}{2(2)-1}\frac{4+1}{4-1} = \frac{5}{3}


aurilio000: Perceba que x^2+x-6=(x-2)(x+3) e x^2-x-2=
Perguntas interessantes