Junte-se a um colega e estabeleçam três matrizes quadradas, A, B e C, de ordem 2, e verifiquem numericamente a validade das propriedades:
A) (A.B).C = A . (B.C)
B) (A+B).C = A . C+B.C
C) A . L2 = L2 . A = A
D) (K . A) . B = K . (A.B), com k e R
E) (A . B)T = BT . AT
Soluções para a tarefa
Respondido por
86
Olá
Vamos considerar as matrizes A =
, B =
e C = ![\left[\begin{array}{cc}0&2\\1&1\\\end{array}\right] \left[\begin{array}{cc}0&2\\1&1\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%26amp%3B2%5C%5C1%26amp%3B1%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
a) (A.B).C = A.(B.C)
(A.B).C =
*
*
=
*
= ![\left[\begin{array}{cc}0&2\\0&6\\\end{array}\right] \left[\begin{array}{cc}0&2\\0&6\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%26amp%3B2%5C%5C0%26amp%3B6%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
A.(B.C) =
*
*
=
*
= ![\left[\begin{array}{cc}0&2\\0&6\\\end{array}\right] \left[\begin{array}{cc}0&2\\0&6\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%26amp%3B2%5C%5C0%26amp%3B6%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
Logo, (A.B).C = A.(B.C)
b) (A+B).C = AC + BC
(A+B).C =
+
*
=
*
= ![\left[\begin{array}{cc}2&6\\4&10\\\end{array}\right] \left[\begin{array}{cc}2&6\\4&10\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26amp%3B6%5C%5C4%26amp%3B10%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
A.C + B.C =
*
+
*
=
+
= ![\left[\begin{array}{cc}2&6\\4&10\\\end{array}\right] \left[\begin{array}{cc}2&6\\4&10\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26amp%3B6%5C%5C4%26amp%3B10%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
Logo. (A + B).C = A.C + B.C
c) A.L2 = L2.A = A
A.L2 =
*
= ![\left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26amp%3B2%5C%5C3%26amp%3B4%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
L2.A =
*
= ![\left[\begin{array}{cc}1&2\\3&4\\\end{array}\right] \left[\begin{array}{cc}1&2\\3&4\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26amp%3B2%5C%5C3%26amp%3B4%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
Logo, A.L2 = L2.A = A
d) (K.A).B = K(A.B)
(K.A).B = K *
*
=
*
= ![\left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right] \left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DK%26amp%3B0%5C%5C3K%26amp%3B0%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
K(A.B) = K *
= ![\left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right] \left[\begin{array}{cc}K&0\\3K&0\\\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DK%26amp%3B0%5C%5C3K%26amp%3B0%5C%5C%5Cend%7Barray%7D%5Cright%5D+)
Logo, (K.A).B = K.(A.B)
e)![( A.B)^{T} = B^{T} . A^{T} ( A.B)^{T} = B^{T} . A^{T}](https://tex.z-dn.net/?f=%28+A.B%29%5E%7BT%7D+%3D++B%5E%7BT%7D+.++A%5E%7BT%7D+)
=
=
*
=
.
Logo![( A.B)^{T} = B^{T} . A^{T} ( A.B)^{T} = B^{T} . A^{T}](https://tex.z-dn.net/?f=%28+A.B%29%5E%7BT%7D+%3D+B%5E%7BT%7D+.+A%5E%7BT%7D+)
Obs: atenção nos parênteses
Vamos considerar as matrizes A =
a) (A.B).C = A.(B.C)
(A.B).C =
A.(B.C) =
Logo, (A.B).C = A.(B.C)
b) (A+B).C = AC + BC
(A+B).C =
A.C + B.C =
Logo. (A + B).C = A.C + B.C
c) A.L2 = L2.A = A
A.L2 =
L2.A =
Logo, A.L2 = L2.A = A
d) (K.A).B = K(A.B)
(K.A).B = K *
K(A.B) = K *
Logo, (K.A).B = K.(A.B)
e)
Logo
Obs: atenção nos parênteses
LyviaS2:
Qualquer número multiplicado por 0 não é 0?
Perguntas interessantes
ENEM,
11 meses atrás
ENEM,
11 meses atrás
ENEM,
11 meses atrás
Administração,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Administração,
1 ano atrás