Matemática, perguntado por smokhse, 1 ano atrás

João pretende cercar um terreno que possui no interior do estado e, para isso, precisa comprar uma tela para realizar tal tarefa. Sabe-se que o terreno possui uma forma retangular e que seu comprimento é 8 metros maior que sua largura. Sabendo-se que a área total desse terreno é de 1209 metros quadrados, a quantidade exata de tela que João deverá comprar para cercar os quatros lados desse terreno, em metros, é:

a - 110
b - 120
c - 130
d - 140

Soluções para a tarefa

Respondido por leomodolon
2

Para cercar os quatros lados do terreno, João deverá comprar cerca de 140 metros de cerca.

Para responder está questão precisamos lembrar que a área do retângulo equivale a base x altura, neste caso, comprimento x largura.

Levando em conta que largura = x, então teremos:

A=x. (x+8)

A= x²+8x

Sabendo que área é igual a 1209 m², então:

1209=x²+8x

x²+8x-1209=0

Note que agora temos uma equação de segundo grau, portanto vamos utilizar a Fórmula de Bhaskara onde:

\frac {-b +- \sqrt{b^{2} - 4.a.c }}{2.1} \\\\\frac {-8+- \sqrt{8^{2} - 4.1.(-1209)}}{2} \\\frac {-8+- \sqrt{64 - (-4836)}}{21} \\\\\frac{-8+- \sqrt{4900}}{2} \\\\\\x1= \frac {-8-70}{2} = -39m\\x2= \frac{-8+70}{2} = 31m

Levando em conta que o tamanho não pode ser negativo, então o valor de x (largura) é de 31 metros. Logo, como o valor do comprimento é 8 metros maior, este será de 39 metros.

Para saber quantos metros de cerca João deve comprar para cercar os quatro lados, deveremos encontrar o perímetro, cujo é a soma de todos os lados, logo:

P= 31+31+39+39=140m

Resposta, letra "d"

Espero que tenha ajudado!

Para aprender mais sobre área de polígonos: https://brainly.com.br/tarefa/16401310

Bons estudos!

Perguntas interessantes