Matemática, perguntado por biateramoto14, 1 ano atrás

ITEEM D PFVR ALGUÉM sabe?

Anexos:

brenoreis17: Sen 15 = Sen (45 - 30)

Soluções para a tarefa

Respondido por robertocarlos5otivr9
0
\left[\begin{array}{ccc}\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\\-\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\end{array}\right]=\text{sen}~15^{\circ}\cdot\text{cos}~15^{\circ}-(-\text{sen}~15^{\circ})\cdot\text{cos}~15^{\circ}

\left[\begin{array}{ccc}\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\\-\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\end{array}\right]=\text{sen}~15^{\circ}\cdot\text{cos}~15^{\circ}+\text{sen}~15^{\circ}\cdot\text{cos}~15^{\circ}

Lembre-se que \text{sen}~(a+b)=\text{sen}~a\cdot\text{cos}~b+\text{sen}~b\cdot\text{cos}~a

Logo, \text{sen}~15^{\circ}\cdot\text{cos}~15^{\circ}+\text{sen}~15^{\circ}\cdot\text{cos}~15^{\circ}=\text{sen}~(15^{\circ}+15^{\circ})=\text{sen}~30^{\circ}

E \text{sen}~30^{\circ}=\dfrac{1}{2}, então:

\left[\begin{array}{ccc}\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\\-\text{sen}~15^{\circ}&\text{cos}~15^{\circ}\end{array}\right]=\boxed{\dfrac{1}{2}}
Perguntas interessantes