integral t^2*e^5t dt
Soluções para a tarefa
Respondido por
0
por partes
int udv = u.v - int v.du
u=t² dv = e^(5t)dt
du = 2tdt v = (1/5)(e^5t)
int (t².e^(5t))dt = t² .(1/5)(e^5t) - int (1/5)e^(5t)2tdt
int (1/5)(e^5t)2tdt : de novo por partes:
u=2t dv = (1/5)(e^(5t))
du=2.dt v = (1/25)(e^(5t))
int (1/5)(e^5t)2tdt = (2t/25)(e^(5t)) - int (2/25)(e^(5t))dt
substuindo essa integral na de cima:
int (t².e^(5t))dt = t² .(1/5)(e^5t) - int (1/5)e^(5t)2tdt
int (t².e^(5t))dt = t² .(1/5)(e^5t) -[ (2t/25)(e^(5t)) - int (2/25)(e^(5t))dt]
t² .(1/5)(e^5t) - (2t/25)e^(5t) + int (2/25)(e^(5t))dt
essa é uma integral simples de resolver:(joga constante pra fora:
t² .(1/5)(e^5t) - (2t/25)e^(5t) + (2/25) int (e^(5t))dt
int e^(5t) = (1/5)e^(5t) então a resposta fica:
t² .(1/5)(e^5t) - (2t/25)e^(5t)+ (2/25) (1/5)e^(5t)
t² .(1/5)(e^5t) - (2t/25)e^(5t) + (2/125)e^(5t) + C
int udv = u.v - int v.du
u=t² dv = e^(5t)dt
du = 2tdt v = (1/5)(e^5t)
int (t².e^(5t))dt = t² .(1/5)(e^5t) - int (1/5)e^(5t)2tdt
int (1/5)(e^5t)2tdt : de novo por partes:
u=2t dv = (1/5)(e^(5t))
du=2.dt v = (1/25)(e^(5t))
int (1/5)(e^5t)2tdt = (2t/25)(e^(5t)) - int (2/25)(e^(5t))dt
substuindo essa integral na de cima:
int (t².e^(5t))dt = t² .(1/5)(e^5t) - int (1/5)e^(5t)2tdt
int (t².e^(5t))dt = t² .(1/5)(e^5t) -[ (2t/25)(e^(5t)) - int (2/25)(e^(5t))dt]
t² .(1/5)(e^5t) - (2t/25)e^(5t) + int (2/25)(e^(5t))dt
essa é uma integral simples de resolver:(joga constante pra fora:
t² .(1/5)(e^5t) - (2t/25)e^(5t) + (2/25) int (e^(5t))dt
int e^(5t) = (1/5)e^(5t) então a resposta fica:
t² .(1/5)(e^5t) - (2t/25)e^(5t)+ (2/25) (1/5)e^(5t)
t² .(1/5)(e^5t) - (2t/25)e^(5t) + (2/125)e^(5t) + C
Anexos:
Respondido por
0
Olá!
Temos:
∫t².e^5tdt --> Faremos por Integração por partes.
Fazendo u = t², vem:
du/dt = 2t => du = 2tdt
E ainda:
dv = e^5tdt => ∫dv = ∫e^5tdt => v = ∫e^5tdt
---------------------------------------------------------------------------------------------------
v = ∫e^5tdt
Fazendo n = 5t, vem:
dn/dt = 5 => dn = 5dt => dt = dn/5
v = ∫eⁿ.dn/5 = 1/5.∫eⁿdn = 1/5.eⁿ = 1/5.e^5t
----------------------------------------------------------------------------------------------------
Voltando:
v = ∫e^5tdt = 1/5.e^5t
Logo:
∫udv = uv - ∫vdu
Substituindo:
∫t².e^5tdt = t².1/5.e^5t - ∫1/5.e^5t.2tdt = 1/5.t².e^5t - 1/5.∫e^5t.2tdt
∫t².e^5tdt = 1/5.t².e^5t - 1/5.A
----------------------------------------------------------------------------------------------------
A = ∫e^5t.2tdt --> Por partes:
u = 2t => du/dt = 2 => du = 2dt
dv = e^5tdt => v = 1/5.e^5t
Mais uma vez:
∫udv = uv - ∫vdu
∫2t.e^5tdt = 1/5.2t.e^5t - 1/5.∫e^5t.2dt
∫e^5t.2tdt = 1/5.2t.e^5t - 2/5.∫e^5tdt = 1/5.2t.e^5t - 2/5.1/5e^5t
∫e^5t.2tdt = 1/5.2t.e^5t - 2/25.e^5t = 2(1/5t.e^5t - 1/25e^5t) = A
----------------------------------------------------------------------------------------------------
Voltando, tínhamos:
∫t².e^5tdt = 1/5.t².e^5t - 1/5.A --> Substituindo A:
∫t².e^5tdt = 1/5.t².e^5t - 1/5.[2(1/5t.e^5t - 1/25.e^5t)]
∫t²e^5tdt = 1/5.t².e^5t - 2/5.(1/5.t.e^5t - 1/25.e^5t) + K
Espero realmente ter ajudado! :)
Temos:
∫t².e^5tdt --> Faremos por Integração por partes.
Fazendo u = t², vem:
du/dt = 2t => du = 2tdt
E ainda:
dv = e^5tdt => ∫dv = ∫e^5tdt => v = ∫e^5tdt
---------------------------------------------------------------------------------------------------
v = ∫e^5tdt
Fazendo n = 5t, vem:
dn/dt = 5 => dn = 5dt => dt = dn/5
v = ∫eⁿ.dn/5 = 1/5.∫eⁿdn = 1/5.eⁿ = 1/5.e^5t
----------------------------------------------------------------------------------------------------
Voltando:
v = ∫e^5tdt = 1/5.e^5t
Logo:
∫udv = uv - ∫vdu
Substituindo:
∫t².e^5tdt = t².1/5.e^5t - ∫1/5.e^5t.2tdt = 1/5.t².e^5t - 1/5.∫e^5t.2tdt
∫t².e^5tdt = 1/5.t².e^5t - 1/5.A
----------------------------------------------------------------------------------------------------
A = ∫e^5t.2tdt --> Por partes:
u = 2t => du/dt = 2 => du = 2dt
dv = e^5tdt => v = 1/5.e^5t
Mais uma vez:
∫udv = uv - ∫vdu
∫2t.e^5tdt = 1/5.2t.e^5t - 1/5.∫e^5t.2dt
∫e^5t.2tdt = 1/5.2t.e^5t - 2/5.∫e^5tdt = 1/5.2t.e^5t - 2/5.1/5e^5t
∫e^5t.2tdt = 1/5.2t.e^5t - 2/25.e^5t = 2(1/5t.e^5t - 1/25e^5t) = A
----------------------------------------------------------------------------------------------------
Voltando, tínhamos:
∫t².e^5tdt = 1/5.t².e^5t - 1/5.A --> Substituindo A:
∫t².e^5tdt = 1/5.t².e^5t - 1/5.[2(1/5t.e^5t - 1/25.e^5t)]
∫t²e^5tdt = 1/5.t².e^5t - 2/5.(1/5.t.e^5t - 1/25.e^5t) + K
Espero realmente ter ajudado! :)
Perguntas interessantes
Geografia,
8 meses atrás
Português,
8 meses atrás
Português,
8 meses atrás
Lógica,
1 ano atrás
Matemática,
1 ano atrás
Ed. Física,
1 ano atrás