inserindo-se 6 meios aritméticos entre 6 e 41 , qual é a razão da p.a assim obtida ?
Soluções para a tarefa
Respondido por
1
Temos dois termos, o primeiro igual a 6 e o último igual a 41. Queremos inserir mais 6 termos, ou seja, teremos um número total de 8 termos.
![a_1=6\\ a_n=41\\ n=8\\ r=?\\\\\\ a_n=a_1+(n-1).r\\\\\\ 41=6+(8-1).r\to \\\\ 41=6+7r\to \\\\41-6=7r\to \\\\ 35=7r\to \\\\ \frac{35}{7} =r\to \\\\ \boxed{r=5}\\\\\\\\ PA~(6, 11, 16, 21, 26, 31, 36, 41) a_1=6\\ a_n=41\\ n=8\\ r=?\\\\\\ a_n=a_1+(n-1).r\\\\\\ 41=6+(8-1).r\to \\\\ 41=6+7r\to \\\\41-6=7r\to \\\\ 35=7r\to \\\\ \frac{35}{7} =r\to \\\\ \boxed{r=5}\\\\\\\\ PA~(6, 11, 16, 21, 26, 31, 36, 41)](https://tex.z-dn.net/?f=a_1%3D6%5C%5C+a_n%3D41%5C%5C+n%3D8%5C%5C+r%3D%3F%5C%5C%5C%5C%5C%5C+a_n%3Da_1%2B%28n-1%29.r%5C%5C%5C%5C%5C%5C+41%3D6%2B%288-1%29.r%5Cto+%5C%5C%5C%5C+41%3D6%2B7r%5Cto+%5C%5C%5C%5C41-6%3D7r%5Cto+%5C%5C%5C%5C+35%3D7r%5Cto+%5C%5C%5C%5C++%5Cfrac%7B35%7D%7B7%7D+%3Dr%5Cto+%5C%5C%5C%5C+%5Cboxed%7Br%3D5%7D%5C%5C%5C%5C%5C%5C%5C%5C+PA%7E%286%2C+11%2C+16%2C+21%2C+26%2C+31%2C+36%2C+41%29)
Perguntas interessantes