Matemática, perguntado por dinossaurodabike, 8 meses atrás

help please, bottom text, bottom text, bottom text

Anexos:

Soluções para a tarefa

Respondido por Nefertitii
1

We have the following functions:

 \sf \begin{cases}  \sf f(x) =  - 2x {}^{2} - 2 \\  \sf g(x) =  - 3x + 2 \\  \sf h(x) =  - 3 \end{cases}

The question asks us what is the result of the composite function formed by:

 \sf f(g(f(h(0))))

To find the answer, we must solve from the inside out, that is, we must start the h (x) function:

 \sf f(g(f( - 3)))

To calculate f (-3), you simply substitute this value of "x" in the function f (x):

 \sf f( - 3) =  - 2.( - 3) {}^{2}  - 2 \\  \sf f( - 3) =  - 2.9 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf f( - 3 ) =  - 18 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf f( - 3) =  - 20   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Replacing the result in the remaining functions:

 \sf f(g( - 20))

Now just follow the same logic as the previous calculation:

 \sf g( - 20) =  - 3.( - 20) + 2 \\  \sf g( - 20 ) =  60 + 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf g( - 20) = 62 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Replacing:

 \sf f(62) = - 2x {}^{2}  - 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf f(62) =  - 2.( 62) {}^{2}  - 2 \:  \:  \:  \\  \sf f(62) =  -2.(3844) - 2 \\  \sf f(62) =  - 7688 - 2 \:  \:  \:  \:  \:  \:  \:  \\  \sf f(62) =  - 7690 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore, we can conclude that:

 \boxed{ \sf f(g(f(h(0)))) =  - 7690}

Hope this helps

Perguntas interessantes