Geometria... ajuda, please!!
Anexos:
Soluções para a tarefa
Respondido por
1
Primeiramente, você deve calcular a área total do triângulo equilátero (todos os lados iguais).
A fórmula para calcular é: L²√3 ÷ 4.
Cada lado vale 4, já que o raio de cada circunferência vale 2.
Então temos: (4)²√3 ÷ 4→ 16√3÷4→ 4√3 (área do triângulo)
Agora vamos calcular a área que os três setores circulares ocupam dentro do triângulo:
Substituindo os valores temos:
Área do setor= 0,6666, mas como temos três setores, multiplicamos esse valor por três, ficando assim com 2
Agora fazemos a diferença da área do triângulo pelas áreas dos setores:
Ah= 4√3 - 2
A fórmula para calcular é: L²√3 ÷ 4.
Cada lado vale 4, já que o raio de cada circunferência vale 2.
Então temos: (4)²√3 ÷ 4→ 16√3÷4→ 4√3 (área do triângulo)
Agora vamos calcular a área que os três setores circulares ocupam dentro do triângulo:
Substituindo os valores temos:
Área do setor= 0,6666, mas como temos três setores, multiplicamos esse valor por três, ficando assim com 2
Agora fazemos a diferença da área do triângulo pelas áreas dos setores:
Ah= 4√3 - 2
louise995:
Boa noite, da onde saiu aquele 60?
Perguntas interessantes