Matemática, perguntado por gabrielaneduarda, 6 meses atrás

Genteee Me ajudemmmm Pfv!!! Tenho só até as 23:59 Valendo 15 Pontos!

Analise o comportamento da função, identificando os intervalos em que ela é crescentes, decrescentes ou constantes. Assinale apena a(s) alternativa(s) falsa(s).

( ) Decrescente após o ponto B
( ) Crescente após o ponto C
( ) Constante após o ponto A
( ) Crescente até o ponto A
( ) Constante entre os pontos A e B
( ) Crescente entre os pontos C e D
( ) Constante após o ponto D
( ) Decrescente entre os pontos B e C


gabrielaneduarda: pfv quem esta respondendo para um pouco
gabrielaneduarda: pra mim add a foto
jessebasilio80: Respondi na outra postagem!
jessebasilio80: Se não é aquela me diga hein!

Soluções para a tarefa

Respondido por idasilvaalves75
0

Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função.

Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Esse tipo de função deve ser dos Reais para os Reais.

A representação gráfica de uma função do 1º grau é uma reta. Analisando a lei de formação y = ax + b, notamos a dependência entre x e y, e identificamos dois números: a e b. Eles são os coeficientes da função, o valor de a indica se a função é crescente ou decrescente e o valor de b indica o ponto de intersecção da função com o eixo y no plano cartesiano. Observe:

Função crescente Função decrescente




Função crescente: à medida que os valores de x aumentam, os valores correspondentes em y também aumentam.

Função decrescente: à medida que os valores de x aumentam, os valores correspondentes de y diminuem.

Exemplos de funções do 1º grau

y = 4x + 2, a = 4 e b = 2

y = 5x – 9, a = 5 e b = –9

y = – 2x + 10, a = – 2 e b = 10

y = 3x, a = 3 e b = 0

y = – 6x – 1, a = – 6 e b = – 1

y = – 7x + 7, a = –7 e b = 7

Raiz ou zero de uma função do 1º grau

Para determinar a raiz ou o zero de uma função do 1º grau é preciso considerar
y = 0. De acordo com gráfico, no instante em que y assume valor igual a zero, a reta intersecta o eixo x em um determinado ponto, determinando a raiz ou o zero da função.

Vamos determinar a raiz das funções a seguir:

y = 4x + 2
y = 0
4x + 2 = 0
4x = –2
x = –2/4
x = –1/2
A reta representada pela função y = 4x + 2 intersecta o eixo x no seguinte valor: –1/2


y = – 2x + 10
y = 0
– 2x + 10 = 0
– 2x = – 10 (–1)
2x = 10
x = 10/2
x = 5
A reta representada pela função y = – 2x + 10 intersecta o eixo x no seguinte valor: 5
Perguntas interessantes