Matemática, perguntado por sirleir, 1 ano atrás

Gente eu preciso de ajuda.Materia de 9 ano !
Um porta-retrato tem a forma regular.A altura tem 5 cm a mais que a base.Quais são as dimensões desse porta-retratos,sabendo que ele tem 234 cma^2 de área?

Soluções para a tarefa

Respondido por fakeDeath
1

Base = b

Altura = b + 5

Área do porta-retrato = 234


Área de um retângulo = Base x Altura


 234 = b \cdot(b+5)\\<br />234 = b^2 + 5b\\<br />b^2 + 5b - 234 = 0\\


Seguindo na fórmula de Bhaskara:


 \Delta = b^2 - 4\cdota\cdotc\\<br />x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2\cdota}\\\\<br />\Delta = 5^2 - 4\cdot1\cdot(-234) = 25 + 936 = 961\\<br />\sqrt{\Delta} = 31\\\\<br />x_1 = \frac{-5 + 31}{2} = \frac{26}{2} = 13\\<br />x_2 = \frac{-5 - 31}{2} = \frac{-36}{2} = -18\\


Como é impossível ter dimensões negativas, podemos descartar o -18.

Logo,

 Base = x_1\\<br />Base = 13\\\\<br />Altura = Base + 5\\<br />Altura = 13 + 5 = 18\\


A base mede 13 cm e a altura 18 cm.


Prova real:

 Area = Base \cdot Altura\\\\<br />234 = 13\cdot18\\<br />234 = 234

Perguntas interessantes