Gente alguem me explica como resolve isto ??
Calcule aplicando as propriedades:
Por favor ajudemm
Anexos:
Soluções para a tarefa
Respondido por
3
Boa tarde
log(ab) = log(a) + log(b)
log(a/b) = log(a) - log(b)
log(a^n) = n*log(a)
1)
log2(512/64) = log2(512) - log2(64)
log2(512) = log2(2^9) = 9
log2(64) = log2(2^6) = 6
log2/512/64) = 9 - 6 = 3
2)
log(b^2/10a) = 2log(b) - log(a) - log(10) = 2log(b) - log(a) - 1
3)
log2(8a/b^3c^2) = log2(8) + log2(a) - 3log(b) - 2log2(c)
= log2(a) - 3log(b) - 2log2(c) + 3
4)
log3(3*81) = log3(3) + log3(3^4) = log3(3) + 4log3(3) = 5
5)
log2(89/(b^3*c^2) = log2(89) - 3log2(3) - 2log2(c)
6)
log7(49*343/7) = log7(49) + log7(343) - log7(7) =
2log7(7) + 3log7(7) - log7(7) = 2 + 3 - 1 = 4
log(ab) = log(a) + log(b)
log(a/b) = log(a) - log(b)
log(a^n) = n*log(a)
1)
log2(512/64) = log2(512) - log2(64)
log2(512) = log2(2^9) = 9
log2(64) = log2(2^6) = 6
log2/512/64) = 9 - 6 = 3
2)
log(b^2/10a) = 2log(b) - log(a) - log(10) = 2log(b) - log(a) - 1
3)
log2(8a/b^3c^2) = log2(8) + log2(a) - 3log(b) - 2log2(c)
= log2(a) - 3log(b) - 2log2(c) + 3
4)
log3(3*81) = log3(3) + log3(3^4) = log3(3) + 4log3(3) = 5
5)
log2(89/(b^3*c^2) = log2(89) - 3log2(3) - 2log2(c)
6)
log7(49*343/7) = log7(49) + log7(343) - log7(7) =
2log7(7) + 3log7(7) - log7(7) = 2 + 3 - 1 = 4
LukeToSleep:
:/ ainda falta a 3)log (2•4•8•64) na base 2
Perguntas interessantes