Matemática, perguntado por sarahsteffany282, 1 ano atrás

Galeraaa, Dada a função f(x)=x^2-x+4, calcule:

a) f(2)
b) f(0)
c) f(1/2)
d) f(√3)
e) f(-3)/(√2)

HELP ME, PLEASE.

Soluções para a tarefa

Respondido por MarioCarvalho
1

a)

 f_{}(2)  =  {2}^{2}  - 2 + 4 \\  f_{}(2) = 4 - 2 + 4 \\  f_{}(2) = 2 + 4 \\  f_{}(2) = 6

b)

 f_{}(0) =  {0}^{2}  - 0 + 4 \\  f_{}(0) =  4

c)

 f_{}( \frac{1}{2} ) = ( \frac{1}{2}  {)}^{2}  -  \frac{1}{2}  + 4 \\  \\  f_{}( \frac{1}{2} ) =  \frac{1}{4}  -  \frac{1}{2}  + 4 \\  \\  f_{}( \frac{1}{2} ) =  \frac{  1  - 2 + 16}{4}  \\  \\  f_{}( \frac{1}{2} ) =  \frac{15}{4}

d)

 f_{}(  \sqrt{3} ) =  (\sqrt{3}  {)}^{2}  -  \sqrt{3}  + 4 \\ f_{}(  \sqrt{3} ) = 3 -  \sqrt{3}  + 4 \\ f_{}(  \sqrt{3} ) = 7 -  \sqrt{3}

e)

f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) = ( \frac{ - 3}{ \sqrt{2}^{} {}^{}  }  {)}^{2}  -  \frac{ - 3}{ \sqrt{2} }  + 4 \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =   (\frac{ - 3}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  {)}^{2}  -  \frac{ - 3}{ \sqrt{2} }  \times   \frac{ \sqrt{2} }{ \sqrt{2} }   + 4 \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) = (  \frac{ - 3 \sqrt{2} }{2}  {)}^{2}  -  \frac{ - 3}{ 2}  + 4 \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =  \frac{9 \times 2}{4}  -  \frac{  - 3 \sqrt{2} }{2}  + 4 \\   \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =  \frac{9}{2}  -  \frac{ - 3 \sqrt{2} }{2}  + 4 \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =  \frac{9 + 8}{2}  -  \frac{ -  3\sqrt{2} }{2}  \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =  \frac{17}{2}  +  \frac{3 \sqrt{2} }{2}  \\  \\ f_{}( { \frac{ - 3}{ \sqrt{2} }  } ) =  \frac{17 + 3 \sqrt{2} }{2}

Perguntas interessantes