Matemática, perguntado por Gustavo423651, 1 ano atrás

Galera me ajudem na questão de trigonometria? Obrigado

Anexos:

Soluções para a tarefa

Respondido por carlosmath
1
4\cos^3 x - \cos x \ \textless \ 0\\ \\
\cos x(4\cos^2 x -1)\ \textless \ 0\\ \\
\cos x (2\cos x - 1)(2\cos x + 1)\ \textless \ 0\\ \\
\cos x \in (-\infty;-\frac{1}{2}) \cup (0;\frac{1}{2}) \\ \\
\text{Pero... }|\cos x|\leq 1 \text{ entonces}\\ \\
\boxed{\cos x \in [-1;-\frac{1}{2}) \cup (0;\frac{1}{2})}

Si \cos \in[-1,-\frac{1}{2}) entonces

                 $x\in\left(\frac{2\pi}{3},\frac{4\pi}{3}\right)$

Si $\cos x\in\left(0; \frac{1}{2}\right)$ entonces

                  $x\in\left(\frac{\pi}{3}:\frac{\pi}{2}\right)\cup \left(\frac{3\pi}{2};\frac{5\pi}{3}\right)$

Luego unimos

\displaystyle
x\in\left(\frac{2\pi}{3},\frac{4\pi}{3}\right) \cup \left(\frac{\pi}{3}:\frac{\pi}{2}\right)\cup \left(\frac{3\pi}{2};\frac{5\pi}{3}\right) \\ \\ \\
\boxed{x\in \left(\frac{\pi}{3}:\frac{\pi}{2}\right)\cup \left(\frac{2\pi}{3},\frac{4\pi}{3}\right) \cup \left(\frac{3\pi}{2};\frac{5\pi}{3}\right)}



Perguntas interessantes