Matemática, perguntado por fezonasousa92331, 1 ano atrás

gabarito Um serviço de reforma de uma casa cujo valor à vista é R$ 11.200,00 foi financiado em 12 parcelas mensais e iguais, sob o regime de taxa de juros composto de 2,2%, com entrada de R$ 2.500,00.? me ajudeeem por favor!

Soluções para a tarefa

Respondido por Usuário anônimo
1
(V-E)*(1+j/100)^(t+n-1)=P*[(1+j/100)^t-1]/(j/100)

V=valor a vista
E=Entrada
t= número de parcelas
n=número de meses para iniciar o Pagamento

(11200-2500)*(1+2,2/100)^(12+1-1)=P*[(1+2,2/100)^12-1]/(2,2/100)

(8.7000)*(1+0,022)^(12)=P*[(1+0,022)^12-1]/(0,022)

11.296,14=P*13,56

P=11296,14/13,56 =833,05   Letra C

manuel272: vc NÃO DEVE indicar qual a alternativa correta ...pois nos portais as alternativas estão na maioria das vezes em permutação permanente a cada nº predefinido de acessos ao portal ...e depois trabalhou com arredondamentos que não são indicados no texto ..e em MF ..os arredondamentos só são efetuados sobre o resultado final!! exceto se houver informação em contrário
Respondido por manuel272
3
=> Temos o valor á vista = 11200

=> Temos o valor da entrada = 2500


...isto implica que o capital efetivamente financiado foi = 11200 - 2500 = 8700


PODEMOS RESOLVER ESTE EXERCICIO DE 2 FORMAS:

=> UTILIZANDO O CONCEITO DE COEFICIENTE DE FINANCIAMENTO:

temos a fórmula:

CF = i/[1 - 1/(1+i)ⁿ]

Onde

CF = Coeficiente de financiamento, neste caso a determinar
i = taxa de juro da aplicação, neste caso MENSAL 2,2% ...ou 0,022 (de 2,2/100)

n = Número de parcelas a pagar neste caso n = 12

Resolvendo:

CF = 0,022/[1 - 1/(1+ 0,022)¹²]

CF = 0,022/[1 - 1/(1,022)¹²]

CF = 0,022/(1 - 1 / 1,298406705.. )

CF = 0,022/(1 - 0,77017470..)

CF = 0,022 / 0,22982530...

CF = 0,09572488..

aplicando agora a fórmula de cálculo da PMT conhecido o CF e o VA, teremos

PMT = VA . CF

PMT = 8700 . 
0,09572488.. 

PMT = 832,80649888 ...ou 832,81 (valor aproximado)


=> UTILIZANDO O CONCEITO DE SÉRIE UNIFORME POSTECIPADA:

temos a fórmula:

PMT = PV . [(1 + i)ⁿ . i]/[(1 + i)ⁿ - 1]

onde

PMT = Valor da parcela mensal, neste caso a determinar

PV = Valor Presente (Valor atual), neste caso o valor em divida = 8700

i = Taxa de juro da aplicação, neste caso MENSAL e 2,2% ..ou 0,022 (de 2,2/100)

n = Número de parcelas a pagar, neste caso n = 12

Resolvendo:

PMT = 8700 . [(1 + 0,022)¹² . 0,022]/[(1 + 0,022)¹² - 1]

PMT = 8700 . [(1,022)¹² . 0,022]/[(1,022)¹² - 1]

PMT = 8700 . [(1 ,298406705 . 0,022]/[(1 ,298406705 - 1]

PMT = 8700 . (1,298406705 . 0,022)/(0,298406705)

PMT = 8700 . (0 ,028564948 )/(0,298406705)

PMT = 8700 . 0,095724885...

PMT = 832,80649888
...ou 832,81 (valor aproximado)


AVISO IMPORTANTE:

Estas resoluções foram obtidas considerando SEMPRE todas as casas decimais ..até porque não existia NENHUMA informação que limitasse o número de decimais a utilizar!!

Assim (como é regra em Matemática Financeira) só foi efetuado o "arredondamento" no resultado final!!

=> Há gabaritos em portais de ensino considerando como resposta correta o valor de 382,89

..este gabarito ou tem um erro de digitação

..ou tem em consideração algum limite de casas decimais que não foi indicado no texto



Espero ter ajudado
Perguntas interessantes