Matemática, perguntado por pietrobrandalip4s5yb, 5 meses atrás

FUNÇAO MATEMATICA
EXERCICIO ANEXADO

Anexos:

Soluções para a tarefa

Respondido por miguelfmsilva35
1

Explicação passo-a-passo:

a resolução continua simples.

Pede-se a representação de f(x), sabendo-se das seguintes informações:

g(x) = 2x - 1

e

f[g(x)] = 2x - 5

Veja: se f[g(x)] = 2x-5 e se temos que g(x) = 2x-1, então no lugar de g(x) colocaremos "2x-1". Assim, teremos:

f(2x-1) = 2x - 5

Agora note: vamos fazer "2x-1" igual a um certo "d". Então:

2x - 1 = d

2x = d + 1

x = (d+1)/2 ---- agora vamos na função f(2x-1) = 2x - 5 e, no lugar de "x" colocaremos (d+1)/2. Assim:

f(2*(d+1)/2 - 1) = 2*(d+1)/2 - 5

f(d+1 - 1) = d+1 - 5

f(d) = d - 4 ----- agora é só trocar o "d" por "x" e teremos a representação de f(x). Logo:

f(x) = x - 4 <---- Pronto. Esta é a resposta. Esta é a representação de f(x).

Bem, a resposta já está dada. Mas apenas por mera curiosidade, vamos ver se a representação de f(x) é realmente a que encontramos aí em cima, ou seja: f(x) = x-4.

Para isso, vamos ver se f[g(x)] será mesmo igual a "2x-5".

Vamos ver: se temos que f(x) = x - 4, e se temos que g(x) = 2x-1, então vamos encontrar o valor de f(2x-1) e ver se, no fim, encontraremos que f(2x-1) = 2x-5. Vamos ver:

f(x) = x - 4 ---- substituindo-se "x' por "2x-1", teremos:

f(2x-1) = 2x-1 - 4

f(2x-1) = 2x - 5 ------ agora note que: como "2x-1" é a própria função g(x), então está provado que:

f[g(x)] = 2x - 5 ,  como realmente foi dado no enunciado da questão, o que prova que a nossa resposta está corretíssima, ao encontramos que f(x) = x - 4.

É isso aí.

Deu pra entender bem?

OK?


pietrobrandalip4s5yb: EU NAO ENTENDI DA ONDE SAIU O 2x - 5, tem como falar?
Perguntas interessantes