Matemática, perguntado por diego000001, 7 meses atrás

Foi colocado um tapete quadrado sobre um picadeiro circular. O quadrado tem todos os seus vértices sobre o picadeiro circular de 8m² de raio. Nesse caso, a área do tapete é igual a (metros quadrados)?

Soluções para a tarefa

Respondido por mislaineemilly
1

Resposta:

Explicação passo a passo:

33

Respondido por andre19santos
0

A área do tapete é igual a 128 m².

Esta questão se trata de circunferências. Uma circunferência é o conjunto dos pontos que estão à uma mesma distância de um ponto comum chamado centro.

Neste caso, sabemos que o tapete quadrado está inscrito na circunferência, logo, a diagonal do quadrado tem a mesma medida que o diâmetro da circunferência.

Se o raio mede 8 metros, a diagonal (e o diâmetro) mede 16 metros. A diagonal do quadrado, é calculada pelo teorema de Pitágoras:

D² = L² + L²

D² = 2L²

D = L√2

Se a diagonal mede 16 metros, temos que a medida do lado do quadrado é:

16 = L√2

L = 16√2/2

L = 8√2 m

A área do tapete é:

A = L² = (8√2)²

A = 8²·2

A = 128 m²

Leia mais sobre circunferências em:

https://brainly.com.br/tarefa/30505456

Anexos:
Perguntas interessantes