Matemática, perguntado por Luiz089, 1 ano atrás

(Fazu-MG) log 50 + log 40 + log 20 + log 2,5 é igual a:

Soluções para a tarefa

Respondido por 3478elc
2


log 50 + log 40 + log 20 + log 2,5

log 50 = log(2.5^2) ==> log 2 + 2log5

log 40 = log(2^3.5) ==> 3
log 2 + log5

log 20 = 
 log(2^2.5) ==> 2log 2 + log5

log 2,5 = 
 log(25/10) ==> log(2.5^2) - log10 ==> log 2 + 2log5 - log10
=========================================================

 log 2 + 2log5 +  3log 2 + log5 +  2log 2 + log5 + log 2 + 2log5 - log10

 1.log 2 +  3log 2 +  2log 2 + log 2 + 2log5 + log5 + 2log5 - log10

 7log 2 + 5log5 - 1
Respondido por ProfAmaral
1
Duas formas de resolver:
 log \ 50 + log \ 40 + log \ 20 + log \ 2,5=log \ (50\cdot40\cdot20\cdot2,5)\\ \\=log \ 100000=log \ 10^5=5\cdot log \ 10=5\cdot 1=5
------------------------------------------------------------------------------------------------------------------
 log \ 50 + log \ 40 + log \ 20 + log \ 2,5\\
\\ =log \ (5\cdot 10) + log \ (4\cdot 10) + log \ (2\cdot 10) + log \ \big( \frac{25}{10}\big)\\
\\= log \ 5+ log \ 10 + log \ 4 +log \  10 + log \ 2 + log \ 10 + (log \ 25- log \ 10)\\
\\= log \ 5+ log \ 10 + log \ 4 +log \  10 + log \ 2 + log \ 10 + log \ 25- log \ 10\\
\\= log \ 10 + log \  10 + log \ 10 - log \ 10+ log \ 4 + log \ 2 + log \ 5+ log \ 
25\\
\\=2\ log \ 10 + log \ 2^2 + log \ 2 + log \ 5+ log \ 5^2\\
\\=2\cdot1 + 2\cdot log \ 2 + log \ 2 + log \ 5+ 2\cdot log \ 5\\
\\=2 + 3\cdot log \ 2  + 3\cdot log \ 5\\
\\=2 + 3\cdot log \ 2  + 3\cdot log \ 5\\
\\=2 + 3\cdot log \ 2  + 3\cdot log \ \big( \frac{10}{2} \big)\\
\\=2 + 3\cdot log \ 2  + 3\cdot \big(log \ 10-log \ 2 \big)\\
\\=2 + 3\  log \ 2  + 3\ log \ 10- 3\ log \ 2\\
\\=2 + 3\  log \ 2  + 3\cdot 1- 3\ log \ 2\\
\\=2 + 3\  log \ 2  + 3- 3\ log \ 2\\
\\=2 + 3+ 3\  log \ 2 - 3\ log \ 2\\
\\=5

Perguntas interessantes