Matemática, perguntado por firaceli, 6 meses atrás

f(x)= 2sen2(x)+2cos2(x)+x

Soluções para a tarefa

Respondido por simonesantosaraujo91
0

Resposta:

f'(x)=4ens+4cos+1

Resposta

f(x) = 2sen2(x) + 2cos2(x) + x =  \\ f(x) = 2sen \times 2x + 2cos \times 2x + x \\ f(x) \frac{d}{dx}(2sen \times 2x + 2cos \times 2x + x) \\ 2sen \times 2x \\ 4senx \\ f(x) =  \frac{d}{dx}(2sen \times 2x + 2cos \times 2x + x) \\ f(x) =  \frac{d}{dx}(4senx + 2cos \times 2x + x) \\f(x) =  \frac{d}{dx}(2sen \times 2x + 2cos \times 2x + x) \\ 2cos \times 2x \\ 4cosx \\ f(x) =  \frac{d}{dx}(2sen \times 2x + 2cos \times 2x + x) \\ f(x) =  \frac{d}{dx}(4senx + 4cosx + x) \\ f(x) =  \frac{d}{dx}(4senx) +  \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\  \frac{d}{dx}(4senx) \\ 4sen \\ f(x) =  \frac{d}{dx}(4senx) +  \frac{d}{dx}(4cosx) +  \frac{d}{dx} (x) \\ f(x) = 4sen +  \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\ f(x) =  \frac{d}{dx}(4senx) +  \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\  \frac{d}{dx}(4cosx) \\ 4cos \\ f(x) =  \frac{d}{dx}(4senx) +  \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\ f(x) = 4sen + 4cos +  \frac{d}{dx}(x) \\ f(x) =  \frac{d}{dx}(4senx) +  \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\  \frac{d}{dx}(x) \\1\\ f(x) =  \frac{d}{dx}(4senx) + \frac{d}{dx}(4cosx) +  \frac{d}{dx}(x) \\f(x) = 4sen + 4cos + 1 \\ f(x) = 4ens + 4cos + 1 \\ resposta \\ f(x) = 4ens + 4cos + 1

Perguntas interessantes