exercicio 1.calcule
a) log 2 16
b) log 3 81
c) log 5 125
d) log 6 1296
e) log 12 1728
Soluções para a tarefa
Respondido por
23
a) log(2)16 = log(2)2^4 = 4
b) log(3)81 = log(3)3^4 = 4
c) log(5)125 = log(5)5^3 = 3
d) log(6)1296 = ...
1296|2
0648|2
0324|2
0162|2
0081|3
0027|3
0009|3
0003|3
0001 / 2^4 x 3^4 = (2x3)^4 = 6^4
d) log(6)1296 = log(6)6^4 = 4
e) log(12)1728 = ...
1728|2
0864|2
0432|2
0216|2
0108|2
0054|2
0027|3
0009|3
0003|3
0001 / 2^6 x 3^3 = 2^3 x 2^3 x 3^3 = (2x2x3)^3 = 12^3
e) log(12)1728 = log(12)12^3 = 3
b) log(3)81 = log(3)3^4 = 4
c) log(5)125 = log(5)5^3 = 3
d) log(6)1296 = ...
1296|2
0648|2
0324|2
0162|2
0081|3
0027|3
0009|3
0003|3
0001 / 2^4 x 3^4 = (2x3)^4 = 6^4
d) log(6)1296 = log(6)6^4 = 4
e) log(12)1728 = ...
1728|2
0864|2
0432|2
0216|2
0108|2
0054|2
0027|3
0009|3
0003|3
0001 / 2^6 x 3^3 = 2^3 x 2^3 x 3^3 = (2x2x3)^3 = 12^3
e) log(12)1728 = log(12)12^3 = 3
Respondido por
0
Resposta:
a) log(2)16 = log(2)2^4 = 4
b) log(3)81 = log(3)3^4 = 4
c) log(5)125 = log(5)5^3 = 3
d) log(6)1296 = ...
1296|2
0648|2
0324|2
0162|2
0081|3
0027|3
0009|3
0003|3
0001 / 2^4 x 3^4 = (2x3)^4 = 6^4
d) log(6)1296 = log(6)6^4 = 4
e) log(12)1728 = ...
1728|2
0864|2
0432|2
0216|2
0108|2
0054|2
0027|3
0009|3
0003|3
0001 / 2^6 x 3^3 = 2^3 x 2^3 x 3^3 = (2x2x3)^3 = 12^3
e) log(12)1728 = log(12)12^3 = 3
Explicação passo a passo:
Perguntas interessantes