Exemplo
Determine as operações dos números
complexos: 2 = 10 + 8i e w = 2 + 14:
a) z + W
b) z - W
a) z + w = 10 + 8i + 2 + 141 = 12 + 22
b) z-w = 10 + 8i - 2 - 141 = 8 - 6
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade.
Unidade imaginária: define-se a unidade imaginária , representada pela letra i , como sendo a raiz quadrada
de -1. Pode-se escrever então: i = Ö-1 .
Observe que a partir dessa definição , passam a ter sentido certas operações com números reais , a exemplo das raízes quadradas de números negativos .
Ex: Ö-16 = Ö16 . Ö-1 = 4.i = 4i
Potências de i :
i0 = 1
i1 = i
i2 = -1
i3 = i2 . i = -i
i4 = (i2)2 = (-1)2 = 1
i5 = i4 . i = 1.i = i
i6 = i5 . i = i . i = i2 = -1
i7 = i6 . i = -i , etc.
Percebe-se que os valores das potências de i se repetem no ciclo
1 , i , -1 , -i , de quatro em quatro a partir do expoente zero.
Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir:
i4n = ir onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4).
Exemplo: Calcule i2001
Ora, dividindo 2001 por 4, obtemos resto igual a 1. Logo i2001 = i1 = i .
NÚMERO COMPLEXO
Definição: Dados dois números reais a e b , define-se o número complexo z como sendo:
z = a + bi , onde i = Ö-1 é a unidade imaginária .
Exs: z = 2 + 3i ( a = 2 e b = 3)
w = -3 -5i (a = -3 e b = -5)
u = 100i ( a = 0 e b = 100)
NOTAS:
a) diz-se que z = a + bi é a forma binômia ou algébrica do complexo z .
b) dado o número complexo z = a + bi , a é denominada parte real e b parte imaginária.
Escreve-se : a = Re(z) ; b = Im(z) .
c) se em z = a + bi tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3i .
d)se em z = a + bi tivermos b = 0 , dizemos que z é um número real .
Ex: z = 5 = 5 + 0i .
e)do item (c) acima concluímos que todo número real é complexo, ou seja,
o conjunto dos números reais é um subconjunto do conjunto dos números complexos.
f) um número complexo z = a + bi pode também ser representado como um par ordenado z = (a,b) .
Exercícios Resolvidos:
1) Sendo z = (m2 - 5m + 6) + (m2 - 1) i , determine m de modo que z seja um imaginário puro.
Solução: Para que o complexo z seja um imaginário puro, sua parte real deve ser nula ou seja, devemos ter
m2 - 5m + 6 = 0, que resolvida encontramos m=2 ou m=3.