Essa equação está certa?
Como deu 3x-3x = 0 eu acho que ta errado, confere?
8^x^2-x = 4
2^3(x2-x)=2^2
3(x2-x)=2
3x+6-3x=2
3x-3x=2-6
0x=-4.(-1)
x- 4
Soluções para a tarefa
Respondido por
1
Primeiramente vamos desenvolver a equação a fim de encontrar uma igualdade entre potências de mesma base:
![\large\begin{array}{l}\mathsf{8^{x^2-x}=4~\Leftrightarrow~(2^3)^{x^2-x}=2^2~\Leftrightarrow~2^{3(x^2-x)}=2^2}\end{array} \large\begin{array}{l}\mathsf{8^{x^2-x}=4~\Leftrightarrow~(2^3)^{x^2-x}=2^2~\Leftrightarrow~2^{3(x^2-x)}=2^2}\end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B8%5E%7Bx%5E2-x%7D%3D4%7E%5CLeftrightarrow%7E%282%5E3%29%5E%7Bx%5E2-x%7D%3D2%5E2%7E%5CLeftrightarrow%7E2%5E%7B3%28x%5E2-x%29%7D%3D2%5E2%7D%5Cend%7Barray%7D)
Igualando os expoentes:
![\begin{array}{l}\mathsf{3(x^2-x)=2~\Leftrightarrow~3x^2-3x=2~\Leftrightarrow~3x^2-3x-2=0}\end{array} \begin{array}{l}\mathsf{3(x^2-x)=2~\Leftrightarrow~3x^2-3x=2~\Leftrightarrow~3x^2-3x-2=0}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B3%28x%5E2-x%29%3D2%7E%5CLeftrightarrow%7E3x%5E2-3x%3D2%7E%5CLeftrightarrow%7E3x%5E2-3x-2%3D0%7D%5Cend%7Barray%7D)
Aplique Bhaskara para encontrar as raízes dessa equação quadrática:
![\begin{array}{l}\mathsf{\dfrac{-b\pm\sqrt{\Delta}}{2a}~~~~onde~\Delta=b^2-4ac}\end{array} \begin{array}{l}\mathsf{\dfrac{-b\pm\sqrt{\Delta}}{2a}~~~~onde~\Delta=b^2-4ac}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B%5Cdfrac%7B-b%5Cpm%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%7E%7E%7E%7Eonde%7E%5CDelta%3Db%5E2-4ac%7D%5Cend%7Barray%7D)
Primeiro vamos calcular o Δ
![\begin{array}{l}\mathsf{\Delta=(-3)^2-4\cdot3\cdot(-2)}\\\\\mathsf{\Delta=9-(-24)}\\\\\mathsf{\Delta=9+24}\\\\\mathsf{\Delta=33}\end{array} \begin{array}{l}\mathsf{\Delta=(-3)^2-4\cdot3\cdot(-2)}\\\\\mathsf{\Delta=9-(-24)}\\\\\mathsf{\Delta=9+24}\\\\\mathsf{\Delta=33}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B%5CDelta%3D%28-3%29%5E2-4%5Ccdot3%5Ccdot%28-2%29%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D9-%28-24%29%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D9%2B24%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta%3D33%7D%5Cend%7Barray%7D)
Substituindo Δ na fórmula de Bhaskara
![\begin{array}{l}\mathsf{\dfrac{-(-3)\pm \sqrt{33}}{2\cdot 3}~\Leftrightarrow~ \dfrac{3\pm\sqrt{33}}{6}}\\\\\\\left\{\begin{matrix}\mathsf{\dfrac{3+\sqrt{33}}{6} ~\Leftrightarrow~\dfrac{3}{6}+\dfrac{\sqrt{33}}{6}~\Leftrightarrow~\dfrac{1}{2}+\dfrac{\sqrt{33}}{6}}\\\\\\\mathsf{\dfrac{3-\sqrt{33}}{6}~\Leftrightarrow~ \dfrac{3}{6}-\dfrac{\sqrt{33}}{6}~\Leftrightarrow~\dfrac{1}{2}- \dfrac{ \sqrt{33} }{6} }\end{matrix}\right.\end{array} \begin{array}{l}\mathsf{\dfrac{-(-3)\pm \sqrt{33}}{2\cdot 3}~\Leftrightarrow~ \dfrac{3\pm\sqrt{33}}{6}}\\\\\\\left\{\begin{matrix}\mathsf{\dfrac{3+\sqrt{33}}{6} ~\Leftrightarrow~\dfrac{3}{6}+\dfrac{\sqrt{33}}{6}~\Leftrightarrow~\dfrac{1}{2}+\dfrac{\sqrt{33}}{6}}\\\\\\\mathsf{\dfrac{3-\sqrt{33}}{6}~\Leftrightarrow~ \dfrac{3}{6}-\dfrac{\sqrt{33}}{6}~\Leftrightarrow~\dfrac{1}{2}- \dfrac{ \sqrt{33} }{6} }\end{matrix}\right.\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B%5Cdfrac%7B-%28-3%29%5Cpm+%5Csqrt%7B33%7D%7D%7B2%5Ccdot+3%7D%7E%5CLeftrightarrow%7E+%5Cdfrac%7B3%5Cpm%5Csqrt%7B33%7D%7D%7B6%7D%7D%5C%5C%5C%5C%5C%5C%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%5Cmathsf%7B%5Cdfrac%7B3%2B%5Csqrt%7B33%7D%7D%7B6%7D+%7E%5CLeftrightarrow%7E%5Cdfrac%7B3%7D%7B6%7D%2B%5Cdfrac%7B%5Csqrt%7B33%7D%7D%7B6%7D%7E%5CLeftrightarrow%7E%5Cdfrac%7B1%7D%7B2%7D%2B%5Cdfrac%7B%5Csqrt%7B33%7D%7D%7B6%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%5Cdfrac%7B3-%5Csqrt%7B33%7D%7D%7B6%7D%7E%5CLeftrightarrow%7E+%5Cdfrac%7B3%7D%7B6%7D-%5Cdfrac%7B%5Csqrt%7B33%7D%7D%7B6%7D%7E%5CLeftrightarrow%7E%5Cdfrac%7B1%7D%7B2%7D-+%5Cdfrac%7B+%5Csqrt%7B33%7D+%7D%7B6%7D+%7D%5Cend%7Bmatrix%7D%5Cright.%5Cend%7Barray%7D)
![\begin{array}{l}\mathsf{Solu\c{c}\~ao\left\{\begin{matrix}\mathsf{x= \dfrac{1}{2}+ \dfrac{\sqrt{33}}{6}}\\\\\mathsf{ou}\\\\\mathsf{x=\dfrac{1}{2}-\dfrac{ \sqrt{33} }{6} }\end{matrix}\right.}\end{array} \begin{array}{l}\mathsf{Solu\c{c}\~ao\left\{\begin{matrix}\mathsf{x= \dfrac{1}{2}+ \dfrac{\sqrt{33}}{6}}\\\\\mathsf{ou}\\\\\mathsf{x=\dfrac{1}{2}-\dfrac{ \sqrt{33} }{6} }\end{matrix}\right.}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7BSolu%5Cc%7Bc%7D%5C%7Eao%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%5Cmathsf%7Bx%3D+%5Cdfrac%7B1%7D%7B2%7D%2B+%5Cdfrac%7B%5Csqrt%7B33%7D%7D%7B6%7D%7D%5C%5C%5C%5C%5Cmathsf%7Bou%7D%5C%5C%5C%5C%5Cmathsf%7Bx%3D%5Cdfrac%7B1%7D%7B2%7D-%5Cdfrac%7B+%5Csqrt%7B33%7D+%7D%7B6%7D++%7D%5Cend%7Bmatrix%7D%5Cright.%7D%5Cend%7Barray%7D)
Igualando os expoentes:
Aplique Bhaskara para encontrar as raízes dessa equação quadrática:
Primeiro vamos calcular o Δ
Substituindo Δ na fórmula de Bhaskara
viniciushenrique406:
qualquer dúvida pode comentar
Perguntas interessantes
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Pedagogia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás