Matemática, perguntado por tatianemachado84638, 6 meses atrás

Escreva as equações abaixo na forma geral e resolva em R:​

Anexos:

Soluções para a tarefa

Respondido por Leticia1618
3

Explicação passo-a-passo:

A)

x(x + 3) - 40 = 0

x {}^{2}  + 3x - 40 = 0

x =   \dfrac{ - 3 \frac{ + }{} \sqrt{3 {}^{2} \times 4 \times 1 \times  - 40 }  }{2}

x =  \dfrac{ - 3 \frac{ + }{}  \sqrt{9 + 160} }{2}

x =  \dfrac{ - 3 \frac{ + }{}  \sqrt{169}  }{2}

x =  \dfrac{ - 3  \frac{ + }{}13  }{2}

x {}^{1}  =  \dfrac{ - 3 + 13}{2}  =  \dfrac{10}{2}  = 5

x  {}^{2}  =  \dfrac{ - 3 - 13}{2}  =  -  \dfrac{16}{2}  =  - 8

B)

(x + 1)(x - 2) = 3

x {}^{2}  - 2x + x - 2 = 3

x {}^{2}  - x - 2 - 3 = 0

x {}^{2}  - x - 5 = 0

x =  \dfrac{ - ( - 1) \frac{ + }{} \sqrt{( - 1) {}^{2} - 4 \times 1 \times  - 5 }  }{2 \times 1}

x =  \dfrac{1 \frac{ + }{} \sqrt{1 + 20}  }{2}

x =  \dfrac{1 \frac{ + }{}  \sqrt{21} }{2}

x {}^{1}  =  \dfrac{1 +  \sqrt{21} }{2}

x {}^{2}  =  \dfrac{1 -  \sqrt{21} }{2}

C)

10 + x(x - 2) = 2

10 + x {}^{2}  - 2x = 2

10 + x {}^{2}  - 2x - 2 = 0

8 + x {}^{2}  - 2x = 0

x {}^{2}  - 2x + 8 = 0

x =  \dfrac{ - ( - 2) \frac{ + }{} \sqrt{( - 2) {}^{2} - 4 \times 1 \times 8 }  }{2 \times 1}

x =  \dfrac{2 \frac{ + }{} \sqrt{4 - 32}  }{2}

x =  \dfrac{2 \frac{ + }{}  \sqrt{ - 28} }{2}

Não possui solução no conjunto dos números reais.

D)

(x - 1)(x + 5) = 7

x {}^{2}  + 5x - x - 5 = 7

x {}^{2}  + 4x - 5 = 7

x {}^{2}  + 4x - 5 - 7 = 0

x {}^{2}  + 6x - 2x - 12 = 0

x(x + 6) - 2(x + 6) = 0

(x + 6)(x - 2) = 0

x + 6 = 0

x = 0 - 6

x {}^{1}  =  - 6

x - 2 = 0

x = 0 + 2

x {}^{2}  = 2

E)

4 + x(x - 4) = x

4 + x {}^{2}  - 4x = x

 4 + x {}^{2}  - 4x - x = 0

4 + x {}^{2}  - 5x = 0

x {}^{2}  - 5x + 4 = 0

x {}^{2}  - x - 4x + 4 = 0

x(x - 1)4(x - 1) = 0

x - 1 = 0

x = 0 + 1

x {}^{1}  = 1

x - 4 = 0

x = 0 + 4

x {}^{2}  = 4

F)

(x - 3)(x + 2) =  - 4

x {}^{2}  + 2x - 3x - 6 =  - 4

x {}^{2}  - x - 6 =  - 4

x {}^{2}  - x - 6 + 4 = 0

x {}^{2}  + x - 2x - 2 = 0

x(x + 1) - 2(x + 1) = 0

(x + 1)(x - 2) = 0

x + 1 = 0

x = 0 - 1

x {}^{1}  =  - 1

x - 2 = 0

x = 0 + 2

x {}^{2}  = 2

G)

x(x + 5) - 2x = 28

x {}^{2}  + 5x - 2x = 28

x {}^{2}  + 3x = 28

x {}^{2}  + 3x - 28 = 0

x {}^{2}  + 7x  - 4x - 28 = 0

x(x + 7) - 4(x + 7) = 0

x + 7 = 0

x = 0 - 7

x {}^{1}  =  - 7

x - 4 = 0

x = 0 + 4

x {}^{2}  = 4

H)

(x + 5)(x - 3) - x = 5

x {}^{2}  - 3x + 5x - 15 - x = 5

x {}^{2}  + x - 15 = 5

x {}^{2}  + x - 15 - 5 = 0

x {}^{2}  + 5x - 4x - 20 = 0

x(x + 5) - 4(x + 5)

x + 5 = 0

x = 0 - 5

x {}^{1}  =  - 5

x - 4 = 0

x = 0 + 4

x {}^{2}  = 4

I)

2x(x + 3) = x {}^{2}  + 3x + 70

2x {}^{2}  + 6x = x {}^{2}  + 3x + 70

2x {}^{2}  + 6x - x {}^{2}  - 3x - 70 = 0

x {}^{2}  + 3x - 70 = 0

x {}^{2}  + 10x - 7x - 70 = 0

x(x + 10) - 7(x + 10) = 0

x + 10 = 0

x = 0 - 10

x {}^{1}  =  - 10

x - 7 = 0

x = 0 + 7

x {}^{2}  = 7

J)

(x + 3)(x - 4) - 52 =  - x

x {}^{2}  - 4x + 3x - 12 - 52 =  - x

x {}^{2}  - x - 64 =  - x

x {}^{2}  - x + x - 64 = 0

x {}^{2}  - 64 = 0

x {}^{2}  = 0 + 64

x {}^{2}  = 64

x =  \frac{ + }{}  \sqrt{64}

x =  \frac{ + }{} 8

S=>{ +8 e -8}

Perguntas interessantes