Matemática, perguntado por yohannailianovitch, 1 ano atrás

EQUAÇÃO EXPONENCIAL
determine o valor de x;

a) 2ˣ=64

b)7ˣx=643

c) 8ˣ-35

d) 25ˣ=625

e)9ˣ= 1/3

f) 2ˣ=1/32

g)(2/3)ˣ=8/27

h) (9/25)²ˣ=√7

i) 5ˣ=√5

j) 49ˣ=√7

k) 2ˣ⁺⁴=16

l) 5²ˣ¹=1/625

Soluções para a tarefa

Respondido por CyberKirito
1

a)

 {2}^{x}  = 64 \\  {2}^{x}  =  {2}^{6} \\ x = 6

b)

 {7}^{x}  = 643 \\ x =  log_{7}(643) \\ x =  \frac{ log(643) }{ log(7) } =  \frac{2,80}{0,84} =  \frac{10}{3}

c)

 {8}^{x}  = 35 \\ x =  log_{8}(35)  \\ x =  \frac{ log(35) }{ log(8) }  =  \frac{1,54}{0,90}  =  \frac{77}{45}

d)

 {25}^{x}  = 625 \\  {( {5}^{2}) }^{x} =  {5}^{4}   \\  {5}^{2x}  =  {5}^{4}  \\ 2x = 4

x =  \frac{4}{2}  = 2

e)

 {9}^{x}  =  \frac{1}{3}  \\  { ({3}^{2}) }^{x}  =  {3}^{ - 1}  \\  {3}^{2x}  =  {3}^{ - 1}  \\ 2x =  - 1

x =  -  \frac{1}{2}

f)

 {2}^{x}  =  \frac{1}{32}  \\  {2}^{x}  =  {2}^{ - 5}  \\ x =  - 5

g)

 {( \frac{2}{3}) }^{x}  =  \frac{8}{27}  \\  {( \frac{2}{3}) }^{x}  =  { (\frac{2}{3} )}^{3}  \\ x = 3

h)

 { (\frac{9}{25}) }^{2x}  =  \sqrt{7} \\ x =  \frac{1}{2} \times  log_{ \frac{9}{25} }( \sqrt{7} )  \\ x =  \frac{1}{2} \times  (-0,95)

x =  -0,475

i)

 {5}^{x}  =  \sqrt{5}  \\  {5}^{x}  =  {5}^{ \frac{1}{2} }  \\ x =  \frac{1}{2}

j)

 {49}^{x}  =  \sqrt{7}  \\  { ({7}^{2} )}^{x}  =  {7}^{ \frac{1}{2} }  \\  {7}^{2x}  =  {7}^{ \frac{1}{2} }  \\ 2x =  \frac{1}{2}

4x = 1 \\ x =  \frac{1}{4}

k)

 {2}^{x + 4}  = 16 \\  {2}^{x + 4}  =  {2}^{4}  \\ x + 4 = 4 \\ x = 4 - 4 \\ x = 0

l)

 {5}^{2x}  =  \frac{1}{625}  \\  {5}^{2x}  =  {5}^{-4}  \\ 2x = -4 \\ x =  \frac{-4}{2 }  = -2

Perguntas interessantes